Advertisement

Applied Microbiology and Biotechnology

, Volume 100, Issue 2, pp 961–968 | Cite as

Design and preparation of quantum dots fluorescent probes for in situ identification of Microthrix parvicella in bulking sludge

  • Xuening FeiEmail author
  • Wenke Sun
  • Lingyun CaoEmail author
  • Xiumei Jiao
  • Dayong Lin
  • Guozhi Jia
Environmental biotechnology

Abstract

A series of quantum dots (QDs) fluorescent probes for the in situ identification of Microthrix parvicella (M. parvicella) in bulking sludge were designed and prepared. In the preparation of CdTe/CdS QDs, the 11-mercaptoundecanoic acid (11-acid) and 16-mercaptohexadecanoic acid (16-acid) were used as the stabilizer. The prepared QDs probes were characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM), and the results showed that the CdTe/CdS QDs formed a core-shell structure and the long carbon chain was successfully grafted onto its surface. And the three QDs probes had different crystallinity and particle size, which was due to the inhibition effect of long carbon chain. The optical properties test results showed that although the formed core-shell structure and long carbon chain affected the fluorescent intensity, adsorption, and emission spectra of the QDs probes, the probes B and C had a large stokes-shift of 82 and 101 nm, which was a benefit for their fluorescent labeling property. In the fluorescent identification of M. parvicella, the probes B and C effectively adsorbed onto the surface of M. parvicella through a hydrophobic bond, and then identified M. parvicella by their unique fluorescence. In addition, it was found that a better hydrophobic property resulted in better identification efficiency.

Keywords

Fluorescent QDs probes Hydrophobic In situ identification Microthrix parvicella 

Notes

Compliance with Ethics Guidelines

Funding

This research was financially supported by the National Natural Science Foundation of China (51178289).

Conflict of interest

The author Xuening Fei declares that he has no conflict of interest.

The author Lingyun Cao declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52PubMedCrossRefGoogle Scholar
  2. Araújo DSL, Ferreira V, Neto MM, Pereira MA, Mota M, Nicolau A (2015) Study of 16 Portuguese activated sludge systems based on filamentous bacteria populations and their relationships with environmental parameters. Appl Microbiol Biot 99(12):5307–5316CrossRefGoogle Scholar
  3. Bailey RE, Nie S (2003) Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc 125(23):7100–7106PubMedCrossRefGoogle Scholar
  4. Blackall LL, Harbers AE, Greenfield PF, Hayward AC (1988) Actinomycete scum problems in Australian activated sludge plants. Water Sci Technol 20(11–12):493–495Google Scholar
  5. Blackall LL, Seviour EM, Cunningham MA, Seviour RJ, Hugenholtz P (1995) “Microthrix parvicella” is a novel, deep branching member of the actinomycetes subphylum. Syst Appl Microbiol 17(4):513–518CrossRefGoogle Scholar
  6. Blackall LL, Stratton H, Bradford D, Dot TD, Sjörup C, Seviour EM, Seviour RJ (1996) “Candidatus Microthrix parvicella”, a filamentous bacterium from activated sludge sewage treatment plants. Int J Syst Bacteriol 46(1):344–346PubMedCrossRefGoogle Scholar
  7. Blackman B, Battaglia DM, Mishima TD, Johnson MB, Peng X (2007) Control of the morphology of complex semiconductor nanocrystals with a type II heterojunction, dots vs peanuts, by thermal cycling. Chem Mater 19(15):3815–3821CrossRefGoogle Scholar
  8. Blackman B, Battaglia D, Peng X (2008) Bright and water-soluble near IR-Emitting CdSe/CdTe/ZnSe Type-II/Type-I nanocrystals, tuning the efficiency and stability by growth. Chem Mat 20(15):4847–4853CrossRefGoogle Scholar
  9. Chattopadhyay PK, Price D, Harper TF, Betts MR, Yu J, Gostick E, Perfetto SP, Goepfert P, Koup RA, De Rosa SC, Bruchez MP (2006) Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat Med 12(8):972–977PubMedCrossRefGoogle Scholar
  10. Chen Y, Rosenzweig Z, Chem A (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74(19):5132–5138PubMedCrossRefGoogle Scholar
  11. de los Reyes FL, Rothauszky D, Raskin L (2002) Microbial community structures in foaming and nonfoaming full-scale wastewater treatment plants. Water Environ Res 74(5):437–449(13)PubMedCrossRefGoogle Scholar
  12. Dong W, Guo L, Wang M, Xu S (2009) CdTe QDs-based prostate-specific antigen probe for human prostate cancer cell imaging. J Lumin 129(9):926–930CrossRefGoogle Scholar
  13. Eikelboom DH, Van Buijsen HJJ (1983) Microscopic sludge investigation manual. TNO Research Institute of Environmental Hygiene, DelftGoogle Scholar
  14. Erhart R, Bradford D, Seviour RJ, Amann R, Blackall LL (1997) Development and use of fluorescent in-situ hybridization probes for the detection and identification of “Microthrix parvicella” in activated sludge. Sys Appl Microbiol 20(2):310–318CrossRefGoogle Scholar
  15. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976PubMedCrossRefGoogle Scholar
  16. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106(29):7177–7185CrossRefGoogle Scholar
  17. Gui R, An X (2013) Layer-by-layer aqueous synthesis, characterization and fluorescence properties of type-II CdTe/CdS core/shell quantum dots with near-infrared emission. RSC Adv 3:20959–20969CrossRefGoogle Scholar
  18. Hamit-Eminovski J, Eskilsson K, Arnebrant T (2010) Change in surface properties of Microthrix parvicella upon addition of polyaluminium chloride as characterized by atomic force microscopy. Bioremediat J 26(3):323–331Google Scholar
  19. Haobo Bao YG, Zhen L, Gao M (2004) Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core-shell structure. Chem Mater 16(50):3853–3859Google Scholar
  20. Harrison MT, Kershaw SV, Burt MG, Eychmuller A, Weller H, Rogach AL (2000) Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence. Mater Sci Eng B 69(70):355–360CrossRefGoogle Scholar
  21. He Y, Lu HT, Sai LM, Lai WY, Fan QL, Wang LH, Huang W (2006) Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence. J Phys Chem B 110(27):13370–13374PubMedCrossRefGoogle Scholar
  22. Idowu M, Chen JY, Nyokong T (2008) Photoinduced energy transfer between water-soluble CdTe quantum dots and aluminium tetrasulfonated phthalocyanine. New J Chem 32(2):290–296CrossRefGoogle Scholar
  23. Jenkins D, Richard MG, Daigger GT (1993) Manual on the causes and control of activated sludge bulking and foaming, 2 edn. LewisGoogle Scholar
  24. Kim S, Lim YT, Soltesz EG, Grand AMD, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22(1):93–97PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kumari SKS, Marrengane Z, Bux F (2009) Application of quantitative RT-PCR to determine the distribution of Microthrix parvicella in full-scale activated sludge treatment systems. Appl Microbiol Biot 83(6):1135–1141CrossRefGoogle Scholar
  26. Lienen T, Kleyböcker A, Verstraete W, Würdemann H (2014) Foam formation in a downstream digester of a cascade running full-scale biogas plant: influence of fat, oil and grease addition and abundance of the filamentous bacterium Microthrix parvicella. Bioresource Technol 153(2):1–7CrossRefGoogle Scholar
  27. Limpiyakorn T, Kurisu F, Yagi O (2006) Development and application of real-time PCR for quantification of specific ammonia-oxidizing bacteria in activated sludge of sewage treatment systems. Appl Microbiol Biot 72(5):1004–1013CrossRefGoogle Scholar
  28. Martins AMP, Pagilla K, Heijnen JJ, Loosdrecht MCMV (2004) Filamentous bulking sludge—a critical review. Water Res 38(4):793–817PubMedCrossRefGoogle Scholar
  29. Mcilroy SJ, Kristiansen R, Albertsen M, Karst SM, Rossetti S, Nielsen JL, Tandoi V, Seviour RJ, Nielsen PH (2013) Metabolic model for the filamentous ‘Candidatus Microthrix parvicella’ based on genomic and metagenomic analyses. ISME J 7(6):1161–1172PubMedCrossRefGoogle Scholar
  30. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446PubMedCrossRefGoogle Scholar
  31. Mekis I, Talapin DV, Kornowski A, Haase M, Weller H (2003) One-pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals via organometallic and “Greener” chemical approaches. J Physl Chem B 107(30):7454–7462CrossRefGoogle Scholar
  32. Nielsen PHRP, Dueholm TE, Nielsen JL (2002) Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants. Water Sci Technol 46(1–2):73–80PubMedGoogle Scholar
  33. Pan D, Wang Q, Jiang S, Ji X, An L (2005) Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core–shell nanocrystals via a novel two-phase thermal approach. Adv Mater 17(2):176–179CrossRefGoogle Scholar
  34. Roels T, Dauwe F, Van DS, De WK, Roelandt F (2002) The influence of PAX-14 on activated sludge systems and in particular on Microthrix parvicella. Water Sci Technol 46(1–2):487–490PubMedGoogle Scholar
  35. Rogach AL (2000) Nanocrystalline CdTe and CdTe(S) particles: wet chemical preparation, size-dependent optical properties and perspectives of optoelectronic applications. Mat Sci Eng B 69(70):435–440CrossRefGoogle Scholar
  36. Rogach AL, Katsikas L, Kornowski A, Su DS, Eychmüller A, Weller H (1996) Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Ber Bunsenges Phys Chem 100(11):1772–1778CrossRefGoogle Scholar
  37. Rossetti S, Christensson C, Blackall LL, Tandoi V (1997) Phenotypic and phylogenetic description of an Italian isolate of “Microthrix parvicella”. J Appl Microbiol 82(4):405–410PubMedCrossRefGoogle Scholar
  38. Rossetti S, Tomei MC, Nielsen PH, Tandoi V (2005) “Microthrix parvicella”, a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. Fems Microbiol Rev 29(1):49–64PubMedCrossRefGoogle Scholar
  39. Skourides P, Libchaber A, Norris DJ, Brivanlou AH, Noireaux V, Dubertret B (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599):1759–1762PubMedCrossRefGoogle Scholar
  40. Slijkhuis H (1983) Microthrix parvicella, a filamentous bacterium isolated from activated sludge: cultivation in a chemically defined medium. Appl Environ Microbiol 46(4):832–839PubMedPubMedCentralGoogle Scholar
  41. Smith AMGX, Nie S (2009) Quantum-dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80(3):377–385CrossRefGoogle Scholar
  42. Vanysacker L (2014) Development and evaluation of a TaqMan duplex real-time PCR quantification method for reliable enumeration of Candidatus Microthrix. J Microbiol Met 97(2):6–14CrossRefGoogle Scholar
  43. Wanner JKC, Nielsen PH (2010) Microbiology of bulking. IWA Pubishing, LondonGoogle Scholar
  44. Westlund AD, Hagland E, Rothman M (1998) Operational aspects on foaming in digesters caused by Microthrix parvicella. Water Sci Technol 38(8):29–34(6)CrossRefGoogle Scholar
  45. Wu X (2002) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46PubMedCrossRefGoogle Scholar
  46. Xu XH, Phongphonkit P, Ji HF (2011) A fluorescent sensor with a large stokes shift. Imag Sci Photochemi 29(5):364–371Google Scholar
  47. Zhang H, Zhou Z, Yang B (2002) The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J Phys Chem B 107(1):8–13CrossRefGoogle Scholar
  48. Zhang H, Wang L, Xiong H, Hu L, Yang B, Li W (2003) Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv Mater 15(20):1712–1715CrossRefGoogle Scholar
  49. Zhang H, Sun P, Liu C, Gao H, Xu L, Fang J, Wang M, Liu J, Xu S (2011) L-Cysteine capped CdTe-CdS core-shell quantum dots: preparation, characterization and immuno-labeling of HeLa cells. Luminescence 26(2):86–92PubMedCrossRefGoogle Scholar
  50. Zhong X, Han M, Dong Z, White TJ, Knoll W (2003) Composition-tunable Zn(x)Cd(1-x)Se nanocrystals with high luminescence and stability. J Am Chem Soc 125(28):8589–8594PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Environmental and Municipal EngineeringTianjin Chengjian UniversityTianjinChina
  2. 2.School of ScienceTianjin Chengjian UniversityTianjinChina
  3. 3.School of Environmental Science and EngineeringTianjin UniversityTianjinChina

Personalised recommendations