Applied Microbiology and Biotechnology

, Volume 100, Issue 1, pp 347–360 | Cite as

Trophic regulation of autoaggregation in Pseudomonas taiwanensis VLB120

  • Karolin Schmutzler
  • Octavia Natascha Kracht
  • Andreas Schmid
  • Katja BuehlerEmail author
Applied microbial and cell physiology


Five mutants of Pseudomonas taiwanensis VLB120ΔCeGFP showed significant autoaggregation when growing on defined carbohydrates or gluconate, while they grew as suspended cells on complex medium and on organic acids like citrate and succinate. Surprisingly, the respective mutations affected very different genes, although all five strains exhibited the same behaviour of aggregate formation. To elucidate the mechanism of the aggregative behaviour, the microbial adhesion to hydrocarbons (MATH) assay and contact angle measurements were performed that pointed to an increased cell surface hydrophobicity. Moreover, investigations of the outer layer of the cell membrane revealed a reduced amount of O-specific polysaccharides in the lipopolysaccharide of the mutant cells. To determine the regulation of the aggregation, reverse transcription quantitative real-time PCR was performed and, irrespective of the mutation, the transcription of a gene encoding a putative phosphodiesterase, which is degrading the global second messenger cyclic diguanylate, was decreased or even deactivated in all mutants. In summary, it appears that the trophic autoaggregation was regulated via cyclic diguanylate and a link between the cellular cyclic diguanylate concentration and the lipopolysaccharide composition of P. taiwanensis VLB120ΔCeGFP is suggested.


Autoaggregation Cyclic diguanylate Lipopolysaccharide Hydrophobicity Carbon source BifA 



We thank Sebastian Glonke of Laboratory of Thermodynamics, TU Dortmund University, for his support during contact angle measurements. We are grateful to Monika Meuris of Laboratory of Biomaterials and Polymer Sciences, TU Dortmund University, for her help and support during SEM preparation. We thank Carl Zeiss Microscopy GmbH for providing the confocal laser scanning microscope. Karolin Schmutzler was funded by a personal grant from the Ministry of Innovation, Science and Research of North Rhine-Westphalia, in the frame of the CLIB-Graduate Cluster Industrial Biotechnology, contract no. 314-108 00108.

Compliance with ethical standards


This study was funded by the Ministry of Innovation, Science and Research of North Rhine-Westphalia in the frame of CLIB-Graduate Cluster Industrial Biotechnology (contract no. 314-108 001 08).

Conflict of interest

The authors declare that they have no competing interests.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects.

Supplementary material

253_2015_7006_MOESM1_ESM.pdf (1.9 mb)
ESM 1 (PDF 1.89 MB)


  1. Abdel-Nour M, Duncan C, Prashar A, Rao C, Ginevra C, Jarraud S, Low DE, Ensminger AW, Terebiznik MR, Guyard C (2014) The Legionella pneumophila collagen-like protein mediates sedimentation, autoaggregation, and pathogen-phagocyte interactions. Appl Environ Microbiol 80:1441–1454PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alhede M, Kragh KN, Qvortrup K, Allesen-Holm M, van Gennip M, Christensen LD, Jensen PO, Nielsen AK, Parsek M, Wozniak D, Molin S, Tolker-Nielsen T, Hoiby N, Givskov M, Bjarnsholt T (2011) Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS One 6:e27943PubMedPubMedCentralCrossRefGoogle Scholar
  3. Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300PubMedPubMedCentralGoogle Scholar
  5. Beveridge TJ, Makin SA, Kadurugamuwa JL, Li Z (1997) Interactions between biofilms and the environment. FEMS Microbiol Rev 20:291–303PubMedCrossRefGoogle Scholar
  6. Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR (2010) Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75:827–842PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bossier P, Verstraete W (1996) Triggers for microbial aggregation in activated sludge? Appl Microbiol Biotechnol 45:1–6CrossRefGoogle Scholar
  8. Buehler B, Bollhalder I, Hauer B, Witholt B, Schmid A (2003) Use of the two-liquid phase concept to exploit kinetically controlled multistep biocatalysis. Biotechnol Bioeng 81:683–694CrossRefGoogle Scholar
  9. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622PubMedCrossRefGoogle Scholar
  10. Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB, Richardson SH, Ma L, Ralston B, Parsek MR, Anderson EM, Lam JS, Wozniak DJ (2009) Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 73:622–638PubMedPubMedCentralCrossRefGoogle Scholar
  11. Choi KH, Schweizer HP (2006) Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1:153–161PubMedCrossRefGoogle Scholar
  12. Dasgupta T, de Kievit TR, Masoud H, Altman E, Richards JC, Sadovskaya I, Speert DP, Lam JS (1994) Characterization of lipopolysaccharide-deficient mutants of Pseudomonas aeruginosa derived from serotypes O3, O5, and O6. Infect Immun 62:809–817PubMedPubMedCentralGoogle Scholar
  13. Deinema MH, Zevenhuizen LP (1971) Formation of cellulose fibrils by Gram-negative bacteria and their role in bacterial flocculation. Arch Mikrobiol 78:42–51PubMedCrossRefGoogle Scholar
  14. Dillon JK, Fuerst JA, Hayward AC, Davis GHG (1986) A comparison of five methods for assaying bacterial hydrophobicity. J Microbiol Methods 6:13–19CrossRefGoogle Scholar
  15. Dorobantu LS, Yeung AK, Foght JM, Gray MR (2004) Stabilization of oil-water emulsions by hydrophobic bacteria. Appl Environ Microbiol 70:6333–6336PubMedPubMedCentralCrossRefGoogle Scholar
  16. Farrell A, Quilty B (2002) Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol. J Ind Microbiol Biotechnol 28:316–324PubMedCrossRefGoogle Scholar
  17. Ferguson GC, Bertels F, Rainey PB (2013) Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist “fuzzy spreader” compels revision of the model Pseudomonas radiation. Genetics 195:1319–1335PubMedPubMedCentralCrossRefGoogle Scholar
  18. Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189:7945–7947PubMedPubMedCentralCrossRefGoogle Scholar
  19. Frick IM, Morgelin M, Bjorck L (2000) Virulent aggregates of Streptococcus pyogenes are generated by homophilic protein-protein interactions. Mol Microbiol 37:1232–1247PubMedCrossRefGoogle Scholar
  20. Geertsema-Doornbusch GI, van der Mei HC, Busscher HJ (1993) Microbial cell surface hydrophobicity: the involvement of electrostatic interactions in microbial adhesion to hydrocarbons (MATH). J Microbiol Methods 18:61–68CrossRefGoogle Scholar
  21. Ghafoor A, Hay ID, Rehm BHA (2011) Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 77:5238–5246PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gross R, Hauer B, Otto K, Schmid A (2007) Microbial biofilms: new catalysts for maximizing productivity of long-term biotransformations. Biotechnol Bioeng 98:1123–1134PubMedCrossRefGoogle Scholar
  23. Gross R, Lang K, Buehler K, Schmid A (2010) Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnol Bioeng 105:705–717PubMedGoogle Scholar
  24. Haaber J, Cohn MT, Frees D, Andersen TJ, Ingmer H (2012) Planktonic aggregates of Staphylococcus aureus protect against common antibiotics. PLoS One 7:e41075PubMedPubMedCentralCrossRefGoogle Scholar
  25. Halan B, Schmid A, Buehler K (2010) Maximizing the productivity of catalytic biofilms on solid supports in membrane reactors. Biotechnol Bioeng 106:516–527PubMedCrossRefGoogle Scholar
  26. Halan B, Schmid A, Buehler K (2011) Real-time solvent tolerance analysis of Pseudomonas sp. strain VLB120ΔC catalytic biofilms. Appl Environ Microbiol 77:1563–1571PubMedPubMedCentralCrossRefGoogle Scholar
  27. Halan B, Letzel T, Schmid A, Buehler K (2014) Solid support membrane aerated catalytic biofilm reactor for the continuous synthesis of (S)-styrene oxide at gram scale. Biotechnol J 9:1339–1349PubMedCrossRefGoogle Scholar
  28. Hamada T, Sameshima Y, Honda K, Omasa T, Kato J, Ohtake H (2008) A comparison of various methods to predict bacterial predilection for organic solvents used as reaction media. J Biosci Bioeng 106:357–362PubMedCrossRefGoogle Scholar
  29. Hamada T, Maeda Y, Matsuda H, Sameshima Y, Honda K, Omasa T, Cato J, Ohtake H (2009) Effect of cell-surface hydrophobicity on bacterial conversion of water-immiscible chemicals in two-liquid-phase culture systems. J Biosci Bioeng 108:5CrossRefGoogle Scholar
  30. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580PubMedCrossRefGoogle Scholar
  31. Harlow LS, Kadziola A, Jensen KF, Larsen S (2004) Crystal structure of the phosphorolytic exoribonuclease RNase PH from Bacillus subtilis and implications for its quaternary structure and tRNA binding. Protein Sci 13:668–677PubMedPubMedCentralCrossRefGoogle Scholar
  32. Herbst FA, Sondergaard MT, Kjeldal H, Stensballe A, Nielsen PH, Dueholm MS (2015) Major proteomic changes associated with amyloid-induced biofilm formation in Pseudomonas aeruginosa PAO1. J Proteome Res 14:72–81PubMedCrossRefGoogle Scholar
  33. Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102:14422–14427PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hitchcock PJ, Brown TM (1983) Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 154:269–277PubMedPubMedCentralGoogle Scholar
  35. Hori K, Hiramatsu N, Nannbu M, Kanie K, Okochi M, Honda H, Watanabe H (2009) Drastic change in cell surface hydrophobicity of a new bacterial strain, Pseudomonas sp. TIS1-127, induced by growth temperature and its effects on the toluene-conversion rate. J Biosci Bioeng 107:250–255PubMedCrossRefGoogle Scholar
  36. Irie Y, Borlee BR, O’Connor JR, Hill PJ, Harwood CS, Wozniak DJ, Parsek MR (2012) Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 109:20632–20636PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jiménez-Fernández A, López-Sánchez A, Calero P, Govantes F (2015) The c-di-GMP phosphodiesterase BifA regulates biofilm development in Pseudomonas putida. Environ Microbiol Rep 7:78–84PubMedCrossRefGoogle Scholar
  38. Karande R, Halan B, Schmid A, Buehler K (2014) Segmented flow is controlling growth of catalytic biofilms in continuous multiphase microreactors. Biotechnol Bioeng 111:1831–1840PubMedCrossRefGoogle Scholar
  39. Klebensberger J, Rui O, Fritz E, Schink B, Philipp B (2006) Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate. Arch Microbiol 185:417–427PubMedCrossRefGoogle Scholar
  40. Klebensberger J, Lautenschlager K, Bressler D, Wingender J, Philipp B (2007) Detergent-induced cell aggregation in subpopulations of Pseudomonas aeruginosa as a preadaptive survival strategy. Environ Microbiol 9:2247–2259PubMedCrossRefGoogle Scholar
  41. Koehler KA, Blank LM, Frick O, Schmid A (2014) D-Xylose assimilation via the Weimberg pathway by solvent-tolerant Pseudomonas taiwanensis VLB120. Environ Microbiol 17:156–170CrossRefGoogle Scholar
  42. Krasowska A, Sigler K (2014) How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol 4:112PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O’Toole GA (2007) BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189:8165–8178PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kuchma SL, Ballok AE, Merritt JH, Hammond JH, Lu W, Rabinowitz JD, O’Toole GA (2010) Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa: the pilY1 gene and its impact on surface-associated behaviors. J Bacteriol 192:2950–2964PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lam JS, Taylor VL, Islam ST, Hao Y, Kocíncová D (2011) Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front Microbiol 2:118PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lau PC, Lindhout T, Beveridge TJ, Dutcher JR, Lam JS (2009) Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms. J Bacteriol 191:6618–6631PubMedPubMedCentralCrossRefGoogle Scholar
  47. Li Y, Heine S, Entian M, Sauer K, Frankenberg-Dinkel N (2013) NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by an MHYT domain-coupled phosphodiesterase. J Bacteriol 195:3531–3542PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ma L, Wang J, Wang S, Anderson EM, Lam JS, Parsek MR, Wozniak DJ (2012) Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated. Environ Microbiol 14:1995–2005PubMedPubMedCentralCrossRefGoogle Scholar
  49. Martinez-Garcia E, de Lorenzo V (2011) Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 13:2702–2716PubMedCrossRefGoogle Scholar
  50. Martinez-Garcia E, Calles B, Arevalo-Rodriguez M, de Lorenzo V (2011) pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiol 11:38PubMedPubMedCentralCrossRefGoogle Scholar
  51. Martinez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, Gonzalez de Heredia E, Baena I, Martin-Martin I, Rivilla R, Martin M (2014) Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas. PLoS One 9:e87608PubMedPubMedCentralCrossRefGoogle Scholar
  52. Murphy K, Park AJ, Hao Y, Brewer D, Lam JS, Khursigara CM (2014) Influence of O polysaccharides on biofilm development and outer membrane vesicle biogenesis in Pseudomonas aeruginosa PAO1. J Bacteriol 196:1306–1317PubMedPubMedCentralCrossRefGoogle Scholar
  53. Nakao R, Ramstedt M, Wai SN, Uhlin BE (2012) Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PLoS One 7:e51241PubMedPubMedCentralCrossRefGoogle Scholar
  54. O’Toole GA, Gibbs KA, Hager PW, Phibbs PV Jr, Kolter R (2000) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 182:425–431PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ochiai K, Kurita-Ochiai T, Kamino Y, Ikeda T (1993) Effect of co-aggregation on the pathogenicity of oral bacteria. J Med Microbiol 39:183–190PubMedCrossRefGoogle Scholar
  56. Panke S, Witholt B, Schmid A, Wubbolts MG (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol 64:2032–2043PubMedPubMedCentralGoogle Scholar
  57. Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology 146:2803–2814PubMedCrossRefGoogle Scholar
  58. Roemling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52CrossRefGoogle Scholar
  59. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33CrossRefGoogle Scholar
  60. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  61. Schembri MA, Hjerrild L, Gjermansen M, Klemm P (2003) Differential expression of the Escherichia coli autoaggregation factor antigen 43. J Bacteriol 185:2236–2242PubMedPubMedCentralCrossRefGoogle Scholar
  62. Schmutzler K, Schmid A, Buehler K (2015) A three-step method for analysing bacterial biofilm formation under continuous medium flow. Appl Microbiol Biotechnol 99:6035–6047PubMedCrossRefGoogle Scholar
  63. Simon R, Priefer U, Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1:784–791CrossRefGoogle Scholar
  64. Sorroche FG, Spesia MB, Zorreguieta A, Giordano W (2012) A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl Environ Microbiol 78:4092–4101PubMedPubMedCentralCrossRefGoogle Scholar
  65. Starkey M, Hickman JH, Ma L, Zhang N, De Long S, Hinz A, Palacios S, Manoil C, Kirisits MJ, Starner TD, Wozniak DJ, Harwood CS, Parsek MR (2009) Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol 191:3492–3503PubMedPubMedCentralCrossRefGoogle Scholar
  66. Tamber S, Ochs MM, Hancock RE (2006) Role of the novel OprD family of porins in nutrient uptake in Pseudomonas aeruginosa. J Bacteriol 188:45–54PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ulett GC, Valle J, Beloin C, Sherlock O, Ghigo JM, Schembri MA (2007) Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect Immun 75:3233–3244PubMedPubMedCentralCrossRefGoogle Scholar
  68. van den Berg B (2012) Structural basis for outer membrane sugar uptake in pseudomonads. J Biol Chem 287:41044–41052PubMedPubMedCentralCrossRefGoogle Scholar
  69. van der Mei HC, Weerkamp AH, Busscher HJ (1987) A comparison of various methods to determine hydrophobic properties of streptococcal cell surfaces. J Microbiol Methods 6:277–287CrossRefGoogle Scholar
  70. van Loosdrecht MC, Lyklema J, Norde W, Schraa G, Zehnder AJ (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53:1893–1897PubMedPubMedCentralGoogle Scholar
  71. Volmer J, Neumann C, Buehler B, Schmid A (2014) Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity. Appl Environ Microbiol 80:6539–6548PubMedPubMedCentralCrossRefGoogle Scholar
  72. Wei Q, Ma LZ (2013) Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci 14:20983–21005PubMedPubMedCentralCrossRefGoogle Scholar
  73. Witholt B, de Smet M-J, Kingma J, van Beilen JB, Kok M, Lageveen RG, Eggink G (1990) Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol 8:46–52PubMedCrossRefGoogle Scholar
  74. Xu J, Zhao XP, Choi MH, Yoon SC (2010) Isolation and characterization of a transposon mutant of Pseudomonas fluorescens BM07 enhancing the production of polyhydroxyalkanoic acid but deficient in cold-induced exobiopolymer production. FEMS Microbiol Lett 305:91–99PubMedCrossRefGoogle Scholar
  75. Yokota S, Fujii N (2007) Contributions of the lipopolysaccharide outer core oligosaccharide region on the cell surface properties of Pseudomonas aeruginosa. Comp Immunol Microbiol Infect Dis 30:97–109PubMedCrossRefGoogle Scholar
  76. Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–2106PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Karolin Schmutzler
    • 1
    • 2
  • Octavia Natascha Kracht
    • 1
  • Andreas Schmid
    • 2
  • Katja Buehler
    • 2
    Email author
  1. 1.Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical EngineeringTU Dortmund UniversityDortmundGermany
  2. 2.Department of Solar MaterialsHelmholtz-Centre for Environmental Research - UFZLeipzigGermany

Personalised recommendations