Applied Microbiology and Biotechnology

, Volume 100, Issue 1, pp 263–277 | Cite as

Targeting c-kit receptor in neuroblastomas and colorectal cancers using stem cell factor (SCF)-based recombinant bacterial toxins

  • Swati Choudhary
  • Alessa Pardo
  • Reinhard Rosinke
  • Janendra K. Batra
  • Stefan Barth
  • Rama S. VermaEmail author
Applied genetics and molecular biotechnology


Autocrine activation of c-kit (KIT receptor tyrosine kinase) has been postulated to be a potent oncogenic driver in small cell lung cancer, neuroblastoma (NB), and poorly differentiated colorectal carcinoma (CRC). Although targeted therapy involving tyrosine kinase inhibitors (TKIs) such as imatinib mesylate is highly effective for gastrointestinal stromal tumor carrying V560G c-kit mutation, it does not show much potential for targeting wild-type KIT (WT-KIT). Our study demonstrates the role of stem cell factor (SCF)-based toxin conjugates for targeting WT-KIT-overexpressing malignancies such as NBs and CRCs. We constructed SCF-based recombinant bacterial toxins by genetically fusing mutated form of natural ligand SCF to receptor binding deficient forms of Diphtheria toxin (DT) or Pseudomonas exotoxin A (ETA') and evaluated their efficacy in vitro. Efficient targeting was achieved in all receptor-positive neuroblastoma (IMR-32 and SHSY5Y) and colon cancer cell lines (COLO 320DM, HCT 116, and DLD-1) but not in receptor-negative breast carcinoma cell line (MCF-7) thereby proving specificity. While dose- and time-dependent cytotoxicity was observed in both neuroblastoma cell lines, COLO 320DM and HCT 116 cells, only an anti-proliferative effect was observed in DLD-1 cells. We prove that these novel targeting agents have promising potential as KIT receptor tyrosine kinase targeting system.


Protein-fusion toxins Stem cell factor c-kit receptor Targeting 



We are grateful to Aslam Basha for helping with fermentation, DAAD and MHRD for providing fellowships to SC, and the Department of Biotechnology (DBT), Government of India for providing grant (BT/PR13463/PID/06/488/2010) to support this work.

Conflict of interest

The authors declare that they have no competing interests.

Ethical Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2015_6978_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1,462 kb)


  1. Antignani A, FitzGerald D (2013) Immunotoxins: the role of the toxin. Toxins 5:1486–1502. doi: 10.3390/toxins5081486 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ashman LK (1999) The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol 31:1037–1051. doi: 10.1016/S1357-2725(99)00076-X PubMedCrossRefGoogle Scholar
  3. Attoub S, Rivat C, Rodrigues S, Van Bocxlaer S, Bedin M, Bruyneel E, Louvet C, Kornprobst M, André T, Mareel M (2002) The c-kit tyrosine kinase inhibitor STI571 for colorectal cancer therapy. Cancer Res 62:4879–4883PubMedGoogle Scholar
  4. Barth S, Huhn M, Matthey B, Klimka A, Galinski EA, Engert A (2000) Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl Environ Microbiol 66:1572–1579. doi: 10.1128/AEM.66.4.1572-1579.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bellone G, Carbone A, Sibona N, Bosco O, Tibaudi D, Smirne C, Martone T, Gramigni C, Camandona M, Emanuelli G (2001) Aberrant activation of c-kit protects colon carcinoma cells against apoptosis and enhances their invasive potential. Cancer Res 61:2200–2206PubMedGoogle Scholar
  6. Bellone G, Silvestri S, Artusio E, Tibaudi D, Turletti A, Geuna M, Giachino C, Valente G, Emanuelli G, Rodeck U (1997) Growth stimulation of colorectal carcinoma cells via the c-kit receptor is inhibited by TGF-1. J Cell Physiol 172:1–11. doi: 10.1002/(SICI)1097-4652(199707)172:1<1::AID-JCP1>3.0.CO;2-S PubMedCrossRefGoogle Scholar
  7. Bellone G, Smirne C, Carbone A, Buffolino A, Scirelli T, Prati A, Solerio D, Pirisi M, Valente G, Nano M, Emanuelli G (2006) KIT/stem cell factor expression in premalignant and malignant lesions of the colon mucosa in relationship to disease progression and outcomes. Int J Oncol 29:851–859. doi: 10.3892/ijo.29.4.851 PubMedGoogle Scholar
  8. Beppu K, Jaboine J, Merchant MS, Mackall CL, Thiele CJ (2004) Effect of imatinib mesylate on neuroblastoma tumorigenesis and vascular endothelial growth factor expression. J Natl Cancer Inst 96:46–55PubMedCrossRefGoogle Scholar
  9. Bialas M, Borczynska A, Rozwadowska N, Fiszer D, Kosicki W, Jedrzejczak P, Kurpisz M (2010) SCF and c-kit expression profiles in male individuals with normal and impaired spermatogenesis. Andrologia 42:83–91. doi: 10.1111/j.1439-0272.2009.00960.x PubMedCrossRefGoogle Scholar
  10. Bishi DK, Mathapati S, Cherian KM, Guhathakurta S, Verma RS (2014) In vitro hepatic trans-differentiation of human mesenchymal stem cells using sera from congestive/ischemic liver during cardiac failure. PLoS ONE 9:e92397. doi: 10.1371/journal.pone.0092397 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Botchkina G (2013) Colon cancer stem cells—from basic to clinical application. Cancer Lett 338:127–140. doi: 10.1016/j.canlet.2012.04.006 PubMedCrossRefGoogle Scholar
  12. Bruell D, Stöcker M, Huhn M, Redding N, Kupper M, Schumacher P, Paetz A, Bruns CJ, Haisma HJ, Fischer R (2003) The recombinant anti-EGF receptor immunotoxin 425 (scFv)-ETA'suppresses growth of a highly metastatic pancreatic carcinoma cell line. Int J Oncol 23:1179–1186. doi: 10.3892/ijo.23.4.1179 PubMedGoogle Scholar
  13. Burnette WN (1981) "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203. doi: 10.1016/0003-2697(81)90281-5 PubMedCrossRefGoogle Scholar
  14. Chen T, Yang J, Wang Y, Zhan C, Zang Y, Qin J (2005) Design of recombinant stem cell factor-macrophage colony stimulating factor fusion proteins and their biological activity in vitro. J Comput Aided Mol Des 19:319–328. doi: 10.1007/s10822-005-5686-x PubMedCrossRefGoogle Scholar
  15. Choudhary S, Mathew M, Verma RS (2011) Therapeutic potential of anticancer immunotoxins. Drug Discov Today 16:495–503. doi: 10.1016/j.drudis.2011.04.003 PubMedCrossRefGoogle Scholar
  16. Cohen PS, Chan JP, Lipkunskaya M, Biedler JL, Seeger RC (1994) Expression of stem cell factor and c-kit in human neuroblastoma. The Children's Cancer Group. Blood 84:3465–3472PubMedGoogle Scholar
  17. Corless CL, Heinrich MC (2008) Molecular pathobiology of gastrointestinal stromal sarcomas. Annu Rev Pathol 3:557–586. doi: 10.1146/annurev.pathmechdis.3.121806.151538 PubMedCrossRefGoogle Scholar
  18. Demetri GD, Von Mehren M, Blanke CD, Van Den Abbeele AD, Eisenberg B, Roberts PJ, Heinrich MC, Tuveson DA, Singer S, Janicek M, Fletcher JA, Silverman SG, Silberman SL, Capdeville R, Kiese B, Peng B, Dimitri-jevic S, Druker BJ, Corless C, Fletcher CDM, Joensuu H (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480. doi: 10.1056/NEJMoa020461 PubMedCrossRefGoogle Scholar
  19. Ding R, Jiang X, Ha Y, Wang Z, Guo J, Jiang H, Zheng S, Shen Z, Jie W (2015) Activation of Notch1 signalling promotes multi-lineage differentiation of c-KitPOS/NKX2. 5POS bone marrow stem cells: implication in stem cell translational medicine. Stem Cell Res Ther 6:1–15. doi: 10.1186/s13287-015-0085-2 CrossRefGoogle Scholar
  20. Frankel AE, Woo JH, Ahn C, Pemmaraju N, Medeiros BC, Carraway HE, Frankfurt O, Forman SJ, Yang XA, Konopleva M, Garnache-Ottou F, Angelot-Delettre F, Brooks C, Szarek M, Rowinsky E (2014) Activity of SL-401, a targeted therapy directed to interleukin-3 receptor, in blastic plasmacytoid dendritic cell neoplasm patients. Blood 124(3):385–392. doi: 10.1182/blood-2014-04-566737 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Franken NAP, Rodermond HM, Stap J, Haveman J, Van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319. doi: 10.1038/nprot.2006.339 PubMedCrossRefGoogle Scholar
  22. Frost MJ, Ferrao PT, Hughes TP, Ashman LK (2002) Juxtamembrane mutant V560GKit is more sensitive to imatinib (STI571) compared with wild-type c-Kit whereas the kinase domain mutant D816VKit is resistant. Mol Cancer Ther 1:1115–1124PubMedGoogle Scholar
  23. Hibi K, Takahashi T, Sekido Y, Ueda R, Hida T, Ariyoshi Y, Takagi H (1991) Coexpression of the stem cell factor and the c-kit genes in small-cell lung cancer. Oncogene 6:2291–2296PubMedGoogle Scholar
  24. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279:577–580. doi: 10.1126/science.279.5350.577 PubMedCrossRefGoogle Scholar
  25. Högenauer C, Langner C, Lipp RW, Höfler G, Krejs GJ, Hinterleitner TA (2003) Complete remission of a metastatic gastrointestinal stromal tumour with the tyrosine kinase inhibitor imatinib (STI 571): effect of low dosage in an advanced tumour with exon 11 mutation. Eur J Gastroenterol Hepatol 15:323–327. doi: 10.1097/00042737-200303000-00017 PubMedCrossRefGoogle Scholar
  26. Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds) (2013) SEER cancer statistics review, 1975–2010. National Cancer Institute Bethesda, MD. Accessed 5 June 2015
  27. Keppler-Hafkemeyer A, Brinkmann U, Pastan I (1998) Role of caspases in immunotoxin-induced apoptosis of cancer cells. Biochemistry 37:16934–16942. doi: 10.1021/bi980995m PubMedCrossRefGoogle Scholar
  28. Kihara A, Pastan I (1995) Cytotoxic activity of chimeric toxins containing the epidermal growth factor-like domain of heregulins fused to PE38KDEL, a truncated recombinant form of Pseudomonas exotoxin. Cancer Res 55:71–77PubMedGoogle Scholar
  29. Kreitman RJ, Stetler-Stevenson M, Margulies I, Noel P, FitzGerald DJP, Wilson WH, Pastan I (2009) Phase II trial of recombinant immunotoxin RFB4 (dsFv)-PE38 (BL22) in patients with hairy cell leukemia. J Clin Oncol 27:2983–2990. doi: 10.1200/JCO.2008.20.2630 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Lammie A, Drobnjak M, Gerald W, Saad A, Cote R, Cordon-Cardo C (1994) Expression of c-kit and kit ligand proteins in normal human tissues. J Histochem Cytochem 42:1417–1425. doi: 10.1177/42.11.7523489 PubMedCrossRefGoogle Scholar
  31. Lebron MB, Brennan L, Damoci CB, Prewett MC, O’Mahony M, Duignan IJ, Credille KM, DeLigio JT, Starodubtseva M, Amatulli M, Zhang Y, Schwartz KD, Burtrum D, Balderes P, Persaud K, Surguladze D, Loizos N, Paz K, Kotanides H (2014) A human monoclonal antibody targeting the stem cell factor receptor (c-Kit) blocks tumor cell signaling and inhibits tumor growth. Cancer Biol Ther 15:1208–1218. doi: 10.4161/cbt.29523 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333. doi: 10.1038/nprot.2007.30 PubMedCrossRefGoogle Scholar
  33. Lu H, Zang Y, Ze Y, Zhu J, Chen T, Han J, Qin J (2005) Expression, refolding, and characterization of a novel recombinant dual human stem cell factor. Protein Expr Purif 43:126–132. doi: 10.1016/j.pep.2005.03.014 PubMedCrossRefGoogle Scholar
  34. Mathew M, Verma RS (2009) Humanized immunotoxins: a new generation of immunotoxins for targeted cancer therapy. Cancer Sci 100:1359–1365. doi: 10.1111/j.1349-7006.2009.01192.x PubMedCrossRefGoogle Scholar
  35. Matsuhashi N, Saio M, Matsuo A, Sugiyama Y, Saji S (2004) p53 dependence and apoptosis in response to FP treatment with p53-transfected colon cancer cell lines by use of thin layer collagen gel. Oncol Rep 12:357–361. doi: 10.3892/or.12.2.357 PubMedGoogle Scholar
  36. Micke P, Basrai M, Faldum A, Bittinger F, Rönnstrand L, Blaukat A, Beeh KM, Oesch F, Fischer B, Buhl R, Hengstler JG (2003) Characterization of c-kit expression in small cell lung cancer: prognostic and therapeutic implications. Clin Cancer Res 9:188–194PubMedGoogle Scholar
  37. Miettinen M, Lasota J (2005) KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol 13:205–220. doi: 10.1097/01.pai.0000173054.83414.22 PubMedCrossRefGoogle Scholar
  38. Milojkovic D, Apperley J (2009) Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clin Cancer Res 15:7519–7527. doi: 10.1158/1078-0432.CCR-09-1068 PubMedCrossRefGoogle Scholar
  39. Nishida K, Seto M, Takahashi T, Oshima Y, Asano S, Tojo A, Ueda R (1997) In vitro effects of a recombinant toxin, mSCF-PE40, targeting c-kit receptors ectopically expressed in small cell lung cancers. Cancer Lett 113:153–158. doi: 10.1016/S0304-3835(96)04593-4 PubMedCrossRefGoogle Scholar
  40. Oganesyan N, Kim S-H, Kim R (2004) On-column chemical refolding of proteins. Pharmacogenomics 4:22–26Google Scholar
  41. Pardanani A, Elliott M, Reeder T, Li CY, Baxter EJ, Cross NCP, Tefferi A (2003) Imatinib for systemic mast-cell disease. Lancet 362:535–536. doi: 10.1016/S0140-6736(03)14115-3 PubMedCrossRefGoogle Scholar
  42. Park M, Kim WK, Song M, Park M, Kim H, Nam HJ, Baek SH, Kim H (2013) Protein kinase C-δ-mediated recycling of active KIT in colon cancer. Clin Cancer Res 19:4961–4971. doi: 10.1158/1078-0432.ccr-13-013 PubMedCrossRefGoogle Scholar
  43. Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ (2007) Immunotoxin treatment of cancer. Annu Rev Med 58:221–237. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  44. Pignon JM, Giraudier S, Duquesnoy P, Jouault HLN, Imbert M, Vainchenker W, Vernant JP, Tulliez M (1997) A new c-kit mutation in a case of aggressive mast cell disease. Br J Haematol 96:374–376. doi: 10.1046/j.1365-2141.1997.d01-2042.x PubMedCrossRefGoogle Scholar
  45. Potala S, Verma RS (2010) A novel fusion protein Diphtheria toxin-stem cell factor (DT-SCF): purification and characterization. Appl Biochem Biotechnol 162:1258–1269. doi: 10.1007/s12010-009-8896-1 PubMedCrossRefGoogle Scholar
  46. Royds JA, Iacopetta B (2006) p53 and disease: when the guardian angel fails. Cell Death Differ 13:1017–1026. doi: 10.1038/sj.cdd.4401913 PubMedCrossRefGoogle Scholar
  47. Sabah M, Leader M, Kay E (2003) The problem with KIT: clinical implications and practical difficulties with CD117 immunostaining. Appl Immunohistochem Mol Morphol 11:56–61. doi: 10.1097/00022744-200303000-00010 PubMedGoogle Scholar
  48. Schmidt-Arras D, Schwable J, Bohmer F-D, Serve H (2004) Flt3 receptor tyrosine kinase as a drug target in leukemia. Curr Pharm Des 10:1867–1883. doi: 10.2174/1381612043384394 PubMedCrossRefGoogle Scholar
  49. Shafikhani SH, Engel J (2006) Pseudomonas aeruginosa type III-secreted toxin ExoT inhibits host-cell division by targeting cytokinesis at multiple steps. Proc Natl Acad Sci U S A 103:15605–15610. doi: 10.1073/pnas.0605949103 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Shapira A, Benhar I (2010) Toxin-based therapeutic approaches. Toxins 2:2519–2583. doi: 10.3390/toxins2112519 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29. doi: 10.3322/caac.21208 PubMedCrossRefGoogle Scholar
  52. Singh R, Samant U, Hyland S, Chaudhari PR, Wels WS, Bandyopadhyay D (2007) Target-specific cytotoxic activity of recombinant immunotoxin scFv (MUC1)-ETA on breast carcinoma cells and primary breast tumors. Mol Cancer Ther 6:562–569. doi: 10.1158/1535-7163.MCT-06-0604 PubMedCrossRefGoogle Scholar
  53. Sleijfer S, Wiemer E, Seynaeve C, Verweij J (2007) Improved insight into resistance mechanisms to imatinib in gastrointestinal stromal tumors: a basis for novel approaches and individualization of treatment. Oncologist 12:719–726. doi: 10.1634/theoncologist.12-6-719 PubMedCrossRefGoogle Scholar
  54. Smithey BE, Pappo AS, Hill DA (2002) c-kit expression in pediatric solid tumors: a comparative immunohistochemical study. Am J Surg Pathol 26:486–492. doi: 10.1097/00000478-200204000-00011 PubMedCrossRefGoogle Scholar
  55. Szatkowski D, Hellmann A (2015) The overexpression of KIT proto-oncogene in acute leukemic cells is not necessarily caused by the gene mutation. Acta Haematol 133:116–123. doi: 10.1159/000360214 PubMedCrossRefGoogle Scholar
  56. Thorburn A, Thorburn J, Frankel A (2004) Induction of apoptosis by tumor cell-targeted toxins. Apoptosis 9:19–25. doi: 10.1023/B:APPT.0000012118.95548.88 PubMedCrossRefGoogle Scholar
  57. Tobío A, Alfonso A, Botana LM (2015) Cross-talks between c-Kit and PKC isoforms in HMC-1560 and HMC-1560,816 cells. Different role of PKCδ in each cellular line. Cell Immunol 293:104–112. doi: 10.1016/j.cellimm.2014.12.004 PubMedCrossRefGoogle Scholar
  58. Wang C, Curtis JE, Geissler EN, McCulloch EA, Minden MD (1989) The expression of the proto-oncogene C-kit in the blast cells of acute myeloblastic leukemia. Leukemia 3:699–702PubMedGoogle Scholar
  59. Wang C, Liu J, Wang L, Geng X (2008) Solubilization and refolding with simultaneous purification of recombinant human stem cell factor. Appl Biochem Biotechnol 144:181–189. doi: 10.1007/s12010-007-8112-0 PubMedCrossRefGoogle Scholar
  60. Weldon JE, Pastan I (2011) A guide to taming a toxin—recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J 278:4683–4700. doi: 10.1111/j.1742-4658.2011.08182.x PubMedPubMedCentralCrossRefGoogle Scholar
  61. Wels W, Beerli R, Hellmann P, Schmidt M, Marte BM, Kornilova ES, Hekele A, Mendelsohn J, Groner B, Hynes NE (1995) EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins. Int J Cancer 60:137–144. doi: 10.1002/ijc.2910600120 PubMedCrossRefGoogle Scholar
  62. Yamaizumi M, Mekada E, Uchida T, Okada Y (1978) One molecule of diphtheria toxin fragment a introduced into a cell can kill the cell. Cell 15:245–250. doi: 10.1016/0092-8674(78)90099-5 PubMedCrossRefGoogle Scholar
  63. Zhang F, Shan L, Liu Y, Neville D, Woo J-H, Chen Y, Korotcov A, Lin S, Huang S, Sridhar R, Liang W, Wang PC (2013) An anti-PSMA bivalent immunotoxin exhibits specificity and efficacy for prostate cancer imaging and therapy. Adv Healthc Mater 2:736–744. doi: 10.1002/adhm.201200254 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Zhang Z, Zhang R, Joachimiak A, Schlessinger J, Kong X-P (2000) Crystal structure of human stem cell factor: implication for stem cell factor receptor dimerization and activation. Proc Natl Acad Sci U S A 97:7732–7737. doi: 10.1073/pnas.97.14.7732 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Swati Choudhary
    • 1
  • Alessa Pardo
    • 2
  • Reinhard Rosinke
    • 3
  • Janendra K. Batra
    • 4
  • Stefan Barth
    • 2
    • 3
    • 5
  • Rama S. Verma
    • 1
    Email author
  1. 1.Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical EngineeringUniversity Hospital RWTH AachenAachenGermany
  3. 3.Department of Pharmaceutical Product DevelopmentFraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
  4. 4.National Institute of ImmunologyNew DelhiIndia
  5. 5.UCT Faculty of Health SciencesSouth African Research Chair in Cancer BiotechnologyCape TownSouth Africa

Personalised recommendations