Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 24, pp 10575–10585 | Cite as

Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system

  • Hu Zeng
  • Shishi Wen
  • Wei Xu
  • Zhaoren He
  • Guifa Zhai
  • Yunkun Liu
  • Zixin Deng
  • Yuhui SunEmail author
Applied genetics and molecular biotechnology

Abstract

The current diminishing returns in finding useful antibiotics and the occurrence of drug-resistant bacteria call for the need to find new antibiotics. Moreover, the whole genome sequencing revealed that the biosynthetic potential of Streptomyces, which has produced the highest numbers of approved and clinical-trial drugs, has been greatly underestimated. Considering the known gene editing toolkits were arduous and inefficient, novel and efficient gene editing system are desirable. Here, we developed an engineered CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein) combined with the counterselection system CodA(sm), the D314A mutant of cytosine deaminase, to rapidly and effectively edit Streptomyces genomes. In-frame deletion of the actinorhodin polyketide chain length factor gene actI-ORF2 was created in Streptomyces coelicolor M145 as an illustration. This CRISPR/Cas9-CodA(sm) combined system strikingly increased the frequency of unmarked mutants and shortened the time required to generate them. We foresee the system becoming a routine laboratory technique for genome editing to exploit the great biosynthetic potential of Streptomyces and perhaps for other medically and economically important actinomycetes.

Keywords

CRISPR/Cas9 CodA Actinorhodin biosynthesis ActI-ORF2 Gene editing 

Notes

Acknowledgments

This research was supported by grants from National Basic Research Program of China (973 Program), Research Fund for the Doctoral Program of Higher Education of China, and Program for Collaborative Innovative in Wuhan University School of Medicine. We thank Dr. Ryszard Brzezinski at Universite´ de Sherbrooke in Canada for the gift of pMG303M containing codA(sm). We are grateful to associate Prof. Changming Zhao for his help in LC-ESI-HRMS detection of actinorhodin and Dr. Tobias Kieser for his critical reading of the manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2015_6931_MOESM1_ESM.pdf (418 kb)
ESM 1 (PDF 418 kb)

References

  1. Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8:557–563CrossRefPubMedGoogle Scholar
  2. Berdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26CrossRefGoogle Scholar
  3. Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297CrossRefPubMedGoogle Scholar
  4. Campo N, Daveran-Mingot ML, Leenhouts K, Ritzenthaler P, Le Bourgeois P (2002) Cre-loxP recombination system for large genome rearrangements in Lactococcus lactis. Appl Environ Microbiol 68:2359–2367PubMedCentralCrossRefPubMedGoogle Scholar
  5. Chater KF (1993) Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47:685–713CrossRefPubMedGoogle Scholar
  6. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491PubMedCentralCrossRefPubMedGoogle Scholar
  7. Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973PubMedCentralCrossRefPubMedGoogle Scholar
  8. Cobb RE, Wang Y, Zhao H (2014) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol [Epub ahead of print]Google Scholar
  9. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedCentralCrossRefPubMedGoogle Scholar
  10. Deng ZX, Kieser T, Hopwood DA (1988) “Strong incompatibility” between derivatives of the Streptomyces multi-copy plasmid pIJ101. Mol Gen Genet 214:286–294CrossRefPubMedGoogle Scholar
  11. Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493CrossRefPubMedGoogle Scholar
  12. Dubeau MP, Ghinet MG, Jacques PE, Clermont N, Beaulieu C, Brzezinski R (2009) Cytosine deaminase as a negative selection marker for gene disruption and replacement in the genus Streptomyces and other actinobacteria. Appl Environ Microbiol 75:1211–1214PubMedCentralCrossRefPubMedGoogle Scholar
  13. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826PubMedCentralCrossRefPubMedGoogle Scholar
  14. Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio JJ (2014) Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 32:819–821CrossRefPubMedGoogle Scholar
  15. Gong C, Bongiorno P, Martins A, Stephanou NC, Zhu H, Shuman S, Glickman MS (2005) Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nat Struct Mol Biol 12:304–312CrossRefPubMedGoogle Scholar
  16. Guo P, Cheng Q, Xie P, Fan Y, Jiang W, Qin Z (2011) Characterization of the multiple CRISPR loci on Streptomyces linear plasmid pSHK1. Acta Biochim Biophys Sin (Shanghai) 43:630–639CrossRefGoogle Scholar
  17. Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546PubMedCentralCrossRefPubMedGoogle Scholar
  18. Herrmann S, Siegl T, Luzhetska M, Petzke L, Jilg C, Welle E, Erb A, Leadlay PF, Bechthold A, Luzhetskyy A (2012) Site-specific recombination strategies for engineering actinomycete genomes. Appl Environ Microbiol 78:1804–1812PubMedCentralCrossRefPubMedGoogle Scholar
  19. Hopwood DA (2007) Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, New YorkGoogle Scholar
  20. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170CrossRefPubMedGoogle Scholar
  21. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832PubMedCentralCrossRefPubMedGoogle Scholar
  22. Huang H, Zheng G, Jiang W, Hu H, Lu Y (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin (Shanghai) 47:231–243CrossRefGoogle Scholar
  23. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229PubMedCentralCrossRefPubMedGoogle Scholar
  24. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefPubMedGoogle Scholar
  25. Kaster KR, Burgett SG, Rao RN,.Ingolia TD (1983) Analysis of a bacterial hygromycin B resistance gene by transcriptional and translational fusions and by DNA sequencing. Nucleic Acids Res 11: 6895–6911PubMedCentralCrossRefPubMedGoogle Scholar
  26. Kieser T, Bibb M, Buttner M, Chater K, Hopwood D (2000) Practical Streptomyces genetics. The John Innes Foundation, NorwichGoogle Scholar
  27. Kieser T, Hopwood DA, Wright HM, Thompson CJ (1982) pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet 185:223–228CrossRefPubMedGoogle Scholar
  28. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477CrossRefPubMedGoogle Scholar
  29. Moeller R, Stackebrandt E, Reitz G, Berger T, Rettberg P, Doherty AJ, Horneck G, Nicholson WL (2007) Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV, and ionizing radiation. J Bacteriol 189:3306–3311PubMedCentralCrossRefPubMedGoogle Scholar
  30. Muth G, Nußbaumer B, Wohlleben W, Pühler A (1989) A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219:341–348CrossRefGoogle Scholar
  31. Muth G, Wohlleben W, Puhler A (1988) The minimal replicon of the Streptomyces ghanaensis plasmid pSG5 identified by subcloning and Tn5 mutagenesis. Mol Gen Genet 211:424–429CrossRefPubMedGoogle Scholar
  32. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949PubMedCentralCrossRefPubMedGoogle Scholar
  33. Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843CrossRefPubMedGoogle Scholar
  34. Oliynyk M, Stark CB, Bhatt A, Jones MA, Hughes-Thomas ZA, Wilkinson C, Oliynyk Z, Demydchuk Y, Staunton J, Leadlay PF (2003) Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization. Mol Microbiology 49:1179–1190CrossRefGoogle Scholar
  35. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183PubMedCentralCrossRefPubMedGoogle Scholar
  36. Ren X, Sun J, Housden BE, Hu Y, Roesel C, Lin S, Liu L-P, Yang Z, Mao D, Sun L, Wu Q, Ji J-Y, Xi J, Mohr SE, Xu J, Perrimon N, Ni J-Q (2013) Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci U S A 110:19012–19017PubMedCentralCrossRefPubMedGoogle Scholar
  37. Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106PubMedCentralCrossRefPubMedGoogle Scholar
  38. Schmitt-John T, Engels JW (1992) Promoter constructions for efficient secretion expression in Streptomyces lividans. Appl Microbiol Biotechnol 36:493–498PubMedGoogle Scholar
  39. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688CrossRefPubMedGoogle Scholar
  40. Siegl T, Petzke L, Welle E, Luzhetskyy A (2010) I-SceI endonuclease: a new tool for DNA repair studies and genetic manipulations in Streptomyces. Appl Microbiol Biotechnol 87:1525–1532CrossRefPubMedGoogle Scholar
  41. Smithies O (2001) Forty years with homologous recombination. Nat Med 7:1083–1086CrossRefPubMedGoogle Scholar
  42. Sun Y, He X, Liang J, Zhou X, Deng Z (2009) Analysis of functions in plasmid pHZ1358 influencing its genetic and structural stability in Streptomyces lividans 1326. Appl Microbiol Biotechnol 82:303–310CrossRefPubMedGoogle Scholar
  43. Sun Y, Hong H, Samborskyy M, Mironenko T, Leadlay PF, Haydock SF (2006) Organization of the biosynthetic gene cluster in Streptomyces sp. DSM 4137 for the novel neuroprotectant polyketide meridamycin. Microbiology 152:3507–3515CrossRefPubMedGoogle Scholar
  44. Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol [Epub ahead of print]Google Scholar
  45. Weller GR, Kysela B, Roy R, Tonkin LM, Scanlan E, Della M, Devine SK, Day JP, Wilkinson A, d’Adda di Fagagna F, Devine KM, Bowater RP, Jeggo PA, Jackson SP, Doherty AJ (2002) Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297:1686–1689CrossRefPubMedGoogle Scholar
  46. Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30:1180–1182CrossRefGoogle Scholar
  47. Zhang X, Chen W, Zhang Y, Jiang L, Chen Z, Wen Y, Li J (2012) Deletion of ku homologs increases gene targeting frequency in Streptomyces avermitilis. J Ind Microbiol Biotechnol 39:917–925CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hu Zeng
    • 1
  • Shishi Wen
    • 1
  • Wei Xu
    • 1
  • Zhaoren He
    • 1
  • Guifa Zhai
    • 1
  • Yunkun Liu
    • 1
  • Zixin Deng
    • 1
  • Yuhui Sun
    • 1
    Email author
  1. 1.Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University)Ministry of Education and Wuhan University School of Pharmaceutical SciencesWuhanPeople’s Republic of China

Personalised recommendations