Applied Microbiology and Biotechnology

, Volume 99, Issue 23, pp 10215–10224 | Cite as

DasR is a pleiotropic regulator required for antibiotic production, pigment biosynthesis, and morphological development in Saccharopolyspora erythraea

  • Cheng-Heng Liao
  • Ya Xu
  • Sébastien Rigali
  • Bang-Ce YeEmail author
Applied microbial and cell physiology


The GntR-family transcription regulator, DasR, was previously identified as pleiotropic, controlling the primary amino sugar N-acetylglucosamine (GlcNAc) and chitin metabolism in Saccharopolyspora erythraea and Streptomyces coelicolor. Due to the remarkable regulatory impact of DasR on antibiotic production and development in the model strain of S. coelicolor, we here identified and characterized the role of DasR to secondary metabolite production and morphological development in industrial erythromycin-producing S. erythraea. The physiological studies have shown that a constructed deletion of dasR in S. erythraea resulted in antibiotic, pigment, and aerial hyphae production deficit in a nutrient-rich condition. DNA microarray assay, combined with quantitative real-time reverse transcription PCR (qRT-PCR), confirmed these results by showing the downregulation of the genes relating to secondary metabolite production in the dasR null mutant. Notably, electrophoretic mobility shift assays (EMSA) showed DasR as being the first identified regulator that directly regulates the pigment biosynthesis rpp gene cluster. In addition, further studies indicated that GlcNAc, the major nutrient signal of DasR-responsed regulation, blocked secondary metabolite production and morphological development. The effects of GlcNAc were shown to be caused by DasR mediation. These findings demonstrated that DasR is an important pleiotropic regulator for both secondary metabolism and morphological development in S. erythraea, providing new insights for the genetic engineering of S. erythraea with increased erythromycin production.


Saccharopolyspora erythraea DasR Secondary metabolism Morphological development 



This work was supported by grants from the National Science Foundation of China (21276079), SRFDP 20120074110009 of the Chinese Ministry of Education, the National Key Technologies R&D Programs (2014AA02150 and 22007AA02Z331), and Fundamental Research Funds for the Central Universities.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

253_2015_6892_MOESM1_ESM.pdf (47 kb)
Table S1 (PDF 47 kb)


  1. Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8(2):208–215CrossRefPubMedGoogle Scholar
  2. Carata E, Peano C, Tredici SM, Ferrari F, Tala A, Corti G, Bicciato S, De Bellis G, Alifano P (2009) Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif) mutants affected in erythromycin production. Microb Cell Factories 8:18CrossRefGoogle Scholar
  3. Chng C, Lum AM, Vroom JA, Kao CM (2008) A key developmental regulator controls the synthesis of the antibiotic erythromycin in Saccharopolyspora erythraea. Proc Natl Acad Sci U S A 105(32):11,346–11,351CrossRefGoogle Scholar
  4. Colson S, Stephan J, Hertrich T, Saito A, van Wezel GP, Titgemeyer F, Rigali S (2007) Conserved cis-acting elements upstream of genes composing the chitinolytic system of streptomycetes are DasR-responsive elements. J Mol Microbiol Biotechnol 12(1–2):60–66CrossRefPubMedGoogle Scholar
  5. Cortes J, Velasco J, Foster G, Blackaby AP, Rudd BA, Wilkinson B (2002) Identification and cloning of a type III polyketide synthase required for diffusible pigment biosynthesis in Saccharopolyspora erythraea. Mol Microbiol 44(5):1213–1224CrossRefPubMedGoogle Scholar
  6. Elliot M, Damji F, Passantino R, Chater K, Leskiw B (1998) The bldD gene of Streptomyces coelicolor A3(2): a regulatory gene involved in morphogenesis and antibiotic production. J Bacteriol 180(6):1549–1555PubMedCentralPubMedGoogle Scholar
  7. Elliot MA, Bibb MJ, Buttner MJ, Leskiw BK (2001) BldD is a direct regulator of key developmental genes in Streptomyces coelicolor A3(2). Mol Microbiol 40(1):257–269CrossRefPubMedGoogle Scholar
  8. Fernandez-Moreno MA, Caballero JL, Hopwood DA, Malpartida F (1991) The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell 66(4):769–780CrossRefPubMedGoogle Scholar
  9. Han S, Song P, Ren T, Huang X, Cao C, Zhang B (2011) Identification of SACE_7040, a member of TetR family related to the morphological differentiation of Saccharopolyspora erythraea. Curr Microbiol 63(2):121–125CrossRefPubMedGoogle Scholar
  10. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, NorwichGoogle Scholar
  11. Kirm B, Magdevska V, Tome M, Horvat M, Karnicar K, Petek M, Vidmar R, Baebler S, Jamnik P, Fujs S, Horvat J, Fonovic M, Turk B, Gruden K, Petkovic H, Kosec G (2013) SACE_5599, a putative regulatory protein, is involved in morphological differentiation and erythromycin production in Saccharopolyspora erythraea. Curr Microbiol 12:126Google Scholar
  12. Li YY, Chang X, Yu WB, Li H, Ye ZQ, Yu H, Liu BH, Zhang Y, Zhang SL, Ye BC, Li YX (2013) Systems perspectives on erythromycin biosynthesis by comparative genomic and transcriptomic analyses of S. erythraea E3 and NRRL23338 strains. BMC Genomics 14:523PubMedCentralCrossRefPubMedGoogle Scholar
  13. Liao C, Rigali S, Cassani CL, Marcellin E, Nielsen LK, Ye BC (2014a) Control of chitin and N-acetylglucosamine utilization in Saccharopolyspora erythraea. Microbiology 160(Pt 9):1914–1928CrossRefPubMedGoogle Scholar
  14. Liao CH, Yao LL, Ye BC (2014b) Three genes encoding citrate synthases in Saccharopolyspora erythraea are regulated by the global nutrient-sensing regulators GlnR, DasR, and CRP. Mol Microbiol. doi: 10.1111/mmi.12818 Google Scholar
  15. Magdevska V, Gaber R, Goranovic D, Kuscer E, Boakes S, Duran Alonso MB, Santamaria RI, Raspor P, Leadlay PF, Fujs S, Petkovic H (2010) Robust reporter system based on chalcone synthase rppA gene from Saccharopolyspora erythraea. J Microbiol Methods 83(2):111–119CrossRefPubMedGoogle Scholar
  16. Mironov VA, Sergienko OV, Nastasiak IN, Danilenko VN (2004) Biogenesis and regulation of biosynthesis of erythromycins in Saccharopolyspora erythraea: a review. Prikl Biokhim Mikrobiol 40(6):613–624PubMedGoogle Scholar
  17. Narva KE, Feitelson JS (1990) Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). J Bacteriol 172(1):326–333PubMedCentralPubMedGoogle Scholar
  18. Nothaft H, Rigali S, Boomsma B, Swiatek M, McDowall KJ, van Wezel GP, Titgemeyer F (2010) The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control. Mol Microbiol 75(5):1133–1144CrossRefPubMedGoogle Scholar
  19. Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, Haydock SF, Leadlay PF (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 25(4):447–453CrossRefPubMedGoogle Scholar
  20. Reeves AR, English RS, Lampel JS, Post DA, Vanden Boom TJ (1999) Transcriptional organization of the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea. J Bacteriol 181(22):7098–7106PubMedCentralPubMedGoogle Scholar
  21. Rigali S, Nothaft H, Noens EE, Schlicht M, Colson S, Muller M, Joris B, Koerten HK, Hopwood DA, Titgemeyer F, van Wezel GP (2006) The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 61(5):1237–1251CrossRefPubMedGoogle Scholar
  22. Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9(7):670–675PubMedCentralCrossRefPubMedGoogle Scholar
  23. Seo JW, Ohnishi Y, Hirata A, Horinouchi S (2002) ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus. J Bacteriol 184(1):91–103PubMedCentralCrossRefPubMedGoogle Scholar
  24. Staunton J, Wilkinson B (1997) Biosynthesis of erythromycin and rapamycin. Chem Rev 97(7):2611–2630CrossRefPubMedGoogle Scholar
  25. Wu P, Pan H, Zhang C, Wu H, Yuan L, Huang X, Zhou Y, Ye BC, Weaver DT, Zhang L, Zhang B (2014) SACE_3986, a TetR family transcriptional regulator, negatively controls erythromycin biosynthesis in Saccharopolyspora erythraea. J Ind Microbiol Biotechnol 41(7):1159–1167CrossRefPubMedGoogle Scholar
  26. Yao LL, Liao CH, Huang G, Zhou Y, Rigali S, Zhang B, Ye BC (2014) GlnR-mediated regulation of nitrogen metabolism in the actinomycete Saccharopolyspora erythraea. Appl Microbiol Biotechnol 98(18):7935–7948CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Cheng-Heng Liao
    • 1
  • Ya Xu
    • 1
  • Sébastien Rigali
    • 3
  • Bang-Ce Ye
    • 1
    • 2
    Email author
  1. 1.Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.School of Chemistry and Chemical EngineeringShihezi UniversityXinjiangChina
  3. 3.Centre for Protein Engineering, Institut de Chimie B6aUniversity of LiègeLiègeBelgium

Personalised recommendations