Applied Microbiology and Biotechnology

, Volume 99, Issue 19, pp 8309–8318 | Cite as

Effect of specific light supply rate on photosynthetic efficiency of Nannochloropsis salina in a continuous flat plate photobioreactor

  • Eleonora SforzaEmail author
  • Claudio Calvaruso
  • Andrea Meneghesso
  • Tomas Morosinotto
  • Alberto Bertucco
Bioenergy and biofuels


In this work, Nannochloropsis salina was cultivated in a continuous-flow flat-plate photobioreactor, working at different residence times and irradiations to study the effect of the specific light supply rate on biomass productivity and photosynthetic efficiency. Changes in residence times lead to different steady-state cell concentrations and specific growth rates. We observed that cultures at steady concentration were exposed to different values of light intensity per cell. This specific light supply rate was shown to affect the photosynthetic status of the cells, monitored by fluorescence measurements. High specific light supply rate can lead to saturation and photoinhibition phenomena if the biomass concentration is not optimized for the selected operating conditions. Energy balances were applied to quantify the biomass growth yield and maintenance requirements in N. salina cells.


Photosynthesis Photosynthetic efficiency Photoinhibition Energy balance Maintenance 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2015_6876_MOESM1_ESM.pdf (234 kb)
ESM 1 (PDF 233 kb)


  1. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. doi: 10.1146/annurev.arplant.59.032607.092759 CrossRefPubMedGoogle Scholar
  2. Barbosa MJ, Zijffers JW, Nisworo A, Vaes W, van Schoonhoven J, Wijffels RH (2005) Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat-panel reactor using the A-stat technique. Biotechnol Bioeng 89:233–242. doi: 10.1002/bit.20346 CrossRefPubMedGoogle Scholar
  3. Bellou S, Aggelis G (2012) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J Biotechnol 164:318–329. doi: 10.1016/j.jbiotec.2013.01.010 CrossRefPubMedGoogle Scholar
  4. Bertucco A, Beraldi M, Sforza E (2014) Continuous microalgal cultivation in a laboratory-scale photobioreactor under seasonal day-night irradiation: experiments and simulation. Bioprocess Biosyst Eng 37:1535–1542. doi: 10.1007/s00449-014-1125-5 CrossRefPubMedGoogle Scholar
  5. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577. doi: 10.1016/j.rser.2009.10.009 CrossRefGoogle Scholar
  6. Briassoulis D, Panagakis P, Chionidis M, Tzenos D, Lalos A, Tsinos C, Berberidis K, Jacobsen A (2010) An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresour Technol 101:6768–6777. doi: 10.1016/j.biortech.2010.03.103 CrossRefPubMedGoogle Scholar
  7. Camacho-Rodríguez J, González-Céspedes AM, Cerón-García MC, Fernández-Sevilla JM, Acién-Fernández FG, Molina-Grima E (2014) A quantitative study of eicosapentaenoic acid (EPA) production by Nannochloropsis gaditana for aquaculture as a function of dilution rate, temperature and average irradiance. Appl Microbiol Biotechnol 98:2429–2440. doi: 10.1007/s00253-013-5413-9 CrossRefPubMedGoogle Scholar
  8. Cuaresma M, Janssen M, Vílchez C, Wijffels RH (2009) Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnol Bioeng 104:352–359. doi: 10.1002/bit.22394 CrossRefPubMedGoogle Scholar
  9. Greenspan P, Mayer EP, Fowler SD (1985) Nile Red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973CrossRefPubMedGoogle Scholar
  10. Ho S-H, Ye X, Hasunuma T, Chang J-S, Kondo A (2014) Perspectives on engineering strategies for improving biofuel production from microalgae—a critical review. Biotechnol Adv 32:1448–1459. doi: 10.1016/j.biotechadv.2014.09.002 CrossRefPubMedGoogle Scholar
  11. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. doi: 10.1111/j.1365-313X.2008.03492.x CrossRefPubMedGoogle Scholar
  12. Kim CW, Sung M-G, Nam K, Moon M, Kwon J-H, Yang J-W (2014) Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation. Bioresour Technol 159:30–35. doi: 10.1016/j.biortech.2014.02.024 CrossRefPubMedGoogle Scholar
  13. Kliphuis AMJ, Klok AJ, Martens DE, Lamers PP, Janssen M, Wijffels RH (2012) Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance. J Appl Phycol 24:253–266. doi: 10.1007/s10811-011-9674-3 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260. doi: 10.1146/annurev.arplant.58.032806.103844 CrossRefPubMedGoogle Scholar
  15. Maity JP, Bundschuh J, Chen C-Y, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives—a mini review. Energy 78:104–113. doi: 10.1016/ CrossRefGoogle Scholar
  16. Martinez Sancho ME, Jimenez Castillo JM, El Yousfi F (1999) Photoautotrophic consumption of phosphorus by Scenedesmus obliquus in a continuous culture. Influence of light intensity. Process Biochem 34:811–818CrossRefGoogle Scholar
  17. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668CrossRefPubMedGoogle Scholar
  18. Mazzuca Sobczuk T, Chisti Y (2010) Potential fuel oils from the microalga Choricystis minor. J Chem Technol Biotechnol 85:100–108. doi: 10.1002/jctb.2272 CrossRefGoogle Scholar
  19. Moody JW, McGinty CM, Quinn JC (2014) Global evaluation of biofuel potential from microalgae. Proc Natl Acad Sci U S A 111:8691–8696. doi: 10.1073/pnas.1321652111 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc Lond Ser B Biol Sci 163:224–231CrossRefGoogle Scholar
  21. Quigg A, Beardall J (2003) Protein turnover in relation to maintenance metabolism at low photon flux in two marine microalgae. Plant Cell Environ 26:693–703CrossRefGoogle Scholar
  22. Richmond A, Cheng-wu Z (2001) Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. Outdoors 85:259–269Google Scholar
  23. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112. doi: 10.1002/bit.22033 CrossRefPubMedGoogle Scholar
  24. Ruiz J, Álvarez-Díaz PD, Arbib Z, Garrido-Pérez C, Barragán J, Perales JA (2013) Performance of a flat panel reactor in the continuous culture of microalgae in urban wastewater: prediction from a batch experiment. Bioresour Technol 127:456–463. doi: 10.1016/j.biortech.2012.09.103 CrossRefPubMedGoogle Scholar
  25. San Pedro A, González-López CV, Acién FG, Molina-Grima E (2014) Outdoor pilot-scale production of Nannochloropsis gaditana: influence of culture parameters and lipid production rates in tubular photobioreactors. Bioresour Technol 169:667–676. doi: 10.1016/j.biortech.2014.07.052 CrossRefPubMedGoogle Scholar
  26. Sforza E, Simionato D, Giacometti GM, Bertucco A, Morosinotto T (2012) Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS One 7:e38975. doi: 10.1371/journal.pone.0038975 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Sforza E, Ramos-Tercero EA, Gris B, Bettin F, Milani A, Bertucco A (2014a) Integration of Chlorella protothecoides production in wastewater treatment plant: from lab measurements to process design. Algal Res 6:223–233. doi: 10.1016/j.algal.2014.06.002 CrossRefGoogle Scholar
  28. Sforza E, Urbani S, Bertucco A (2014b) Evaluation of maintenance energy requirements in the cultivation of Scenedesmus obliquus: effect of light intensity and regime. J Appl Phycol In Press:DOI:  10.1007/s10811-014-0460-x. doi:  10.1007/s10811-014-0460-x
  29. Simionato D, Sforza E, Corteggiani Carpinelli E, Bertucco A, Giacometti GM, Morosinotto T (2011) Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresour Technol 102:6026–6032. doi: 10.1016/j.biortech.2011.02.100 CrossRefPubMedGoogle Scholar
  30. Simionato D, Basso S, Giacometti GM, Morosinotto T (2013) Optimization of light use efficiency for biofuel production in algae. Biophys Chem 182:71–78. doi: 10.1016/j.bpc.2013.06.017 CrossRefPubMedGoogle Scholar
  31. Tang H, Chen M, Ng KYS, Salley SO (2012) Continuous microalgae cultivation in a photobioreactor. Biotechnol Bioeng 109:2468–2474. doi: 10.1002/bit.24516 CrossRefPubMedGoogle Scholar
  32. Van Bodegom P (2007) Microbial maintenance: a critical review on its quantification. Microb Ecol 53:513–523. doi: 10.1007/s00248-006-9049-5 PubMedCentralCrossRefPubMedGoogle Scholar
  33. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313CrossRefGoogle Scholar
  34. Zhang D, Xue S, Sun Z, Liang K, Wang L, Zhang Q, Cong W (2014) Investigation of continuous-batch mode of two-stage culture of Nannochloropsis sp. for lipid production. Bioprocess Biosyst Eng 37:2073–2082. doi: 10.1007/s00449-014-1185-6 CrossRefPubMedGoogle Scholar
  35. Zijffers J-WF, Schippers KJ, Zheng K, Janssen M, Tramper J, Wijffels RH (2010) Maximum photosynthetic yield of green microalgae in photobioreactors. Mar Biotechnol (NY) 12:708–718. doi: 10.1007/s10126-010-9258-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Industrial Engineering DIIUniversity of PadovaPadovaItaly
  2. 2.Department of BiologyUniversity of PadovaPadovaItaly

Personalised recommendations