Applied Microbiology and Biotechnology

, Volume 99, Issue 19, pp 7879–7891 | Cite as

Enzymatic synthesis and modification of structured phospholipids: recent advances in enzyme preparation and biocatalytic processes

  • Shinji Hama
  • Chiaki Ogino
  • Akihiko KondoEmail author


Phospholipids (PLs) containing specific polar head groups and fatty acids, artificially synthesized from a complex mixture of natural PLs, have considerable industrial applications. The biocatalytic approaches to synthesizing structured PLs are of great interest because the enzymes used show high selectivity and performance under mild conditions, leading to the generation of products that cannot easily be obtained by chemical catalysis. Although the limited supply of phospholipases (e.g., phospholipase D) has thus far been an obstacle to the widespread use of enzymatic processing, recent advances in enzyme preparation have opened up various applications for PL modification. In this review, attempts to increase the productivity and utility of microbial phospholipases and lipases are presented. We also summarize recent developments in enzyme-catalyzed modification of PLs, focusing particularly on the relevant reactions, bioreactor design, and novel proof-of-concept experiments.


Bioreactor Enzyme production Lecithin Phospholipases Phospholipid modification 



This work was supported by grants-in-aid from the Cross-ministerial Strategic Innovation Promotion Program (SIP) from Japan Science and Technology Agency, Japan.

Conflict of interest

The authors declare that they have no competing interests.


  1. Adlercreutz D, Budde H, Wehtje E (2002) Synthesis of phosphatidylcholine with defined fatty acid in the sn-1 position by lipase-catalyzed esterification and transesterification reaction. Biotechnol Bioeng 78:403–411PubMedCrossRefGoogle Scholar
  2. Baeza-Jiménez R, González-Rodríguez J, Kim I-H, García HS, Otero C (2012) Use of immobilized phospholipase A1-catalyzed acidolysis for the production of structured phosphatidylcholine with an elevated conjugated linoleic acid content. Grasas Y Aceites 63:44–52CrossRefGoogle Scholar
  3. Baeza-Jiménez R, López-Martínez LX, Otero C, Kim I-H, García HS (2013) Enzyme-catalysed hydrolysis of phosphatidylcholine for the production of lysophosphatidylcholine. J Chem Technol Biotechnol 88:1859–1863CrossRefGoogle Scholar
  4. Balcão VM, Paiva AL, Malcata FX (1996) Bioreactors with immobilized lipases: state of the art. Enzyme Microb Technol 18:392–416PubMedCrossRefGoogle Scholar
  5. Beer HD, Wohlfahrt G, Schmid RD, McCarthy JEG (1996) The folding and activity of the extracellular lipase of Rhizopus oryzae are modulated by a prosequence. Biochem J 319:351–359PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bekkers ACAPA, Franken PA, van den Bergh CJ, Verbakel JMA, Verheij HM, de Haas GH (1991) The use of genetic engineering to obtain efficient production of porcine pancreatic phospholipase A2 by Saccharomyces cerevisiae. Biochim Biophys Acta 1089:345–351PubMedCrossRefGoogle Scholar
  7. Bi Y-H, Duan Z-Q, Li X-Q, Wang Z-Y, Zhao X-R (2015) Introducing biobased ionic liquids as the nonaqueous media for enzymatic synthesis of phosphatidylserine. J Agric Food Chem 63:1558–1561PubMedCrossRefGoogle Scholar
  8. Cabezas DM, Diehl B, Tomás MC (2009) Effect of processing parameters on sunflower phosphatidylcholine-enriched fractions extracted with aqueous ethanol. Eur J Lipid Sci Technol 111:993–1002CrossRefGoogle Scholar
  9. Cabezas DM, Madoery R, Diehl BWK, Tomás MC (2011) Application of enzymatic hydrolysis on sunflower lecithin using a pancreatic PLA2. J Am Oil Chem Soc 88:443–446CrossRefGoogle Scholar
  10. Cansell M, Nacka F, Combe F (2003) Marine lipid-based liposomes increase in vivo FA bioavailability. Lipids 38:551–559PubMedCrossRefGoogle Scholar
  11. Casado V, Martín D, Torres C, Reglero G (2012) Phospholipases in food industry: a review. Methods Mol Biol 861:495–523PubMedCrossRefGoogle Scholar
  12. Casado V, Reglero G, Torres CF (2013) Production and scale-up of phosphatidyl-tyrosol catalyzed by a food grade phospholipase D. Food Bioprod Process 91:599–608CrossRefGoogle Scholar
  13. Casado V, Reglero G, Torres CF (2014) Novel and efficient solid to solid transphosphatidylation of two phenylalkanols in a biphasic GRAS medium. J Mol Cat B: Enz 99:14–19CrossRefGoogle Scholar
  14. Chen S, Xu L, Li Y, Hao N, Yan M (2013) Bioconversion of phosphatidylserine by phospholipase D from Streptomyces racemochromogenes in a microaqueous water-immiscible organic solvent. Biosci Biotechnol Biochem 77:1939–1941PubMedCrossRefGoogle Scholar
  15. Chojnacka A, Gładkowski W, Kiełbowicz G, Wawrzeńczyk C (2009) Enzymatic enrichment of egg-yolk phosphatidylcholine with α-linolenic acid. Biotechnol Lett 31:705–709PubMedCrossRefGoogle Scholar
  16. Correia-Ledo D, Arnold AA, Mauzeroll J (2010) Synthesis of redox active ferrocene-modified phospholipids by transphosphatidylation reaction and chronoamperometry study of the corresponding redox sensitive liposome. J Am Chem Soc 132:15120–15123PubMedCrossRefGoogle Scholar
  17. Cui Z, Wang Y, Pham BP, Ping F, Pan H, Cheong G-W, Zhang S, Jia B (2012) High level expression and characterization of a thermostable lysophospholipase from Thermococcus kodakarensis KOD1. Extremophiles 16:619–625PubMedCrossRefGoogle Scholar
  18. D’Arrigo P, Servi S (2010) Synthesis of lysophospholipids. Molecules 15:1354–1377PubMedCrossRefGoogle Scholar
  19. D’Arrigo P, Fasoli E, Pedrocchi-Fantoni G, Servi S, Tessaro D (2005) Membrane assisted coupled enzyme system for phospholipid modification. Enzyme Microb Technol 37:435–440CrossRefGoogle Scholar
  20. D’Arrigo P, Cerioli L, Chiappe C, Panzeri W, Tessaro D, Mele A (2012) Improvements in the enzymatic synthesis of phosphatidylserine employing ionic liquids. J Mol Cat B: Enz 84:132–135CrossRefGoogle Scholar
  21. Damnjanović J, Iwasaki Y (2013) Phospholipase D as a catalyst: application in phospholipid synthesis, molecular structure and protein engineering. J Biosci Bioeng 116:271–280PubMedCrossRefGoogle Scholar
  22. De Maria L, Vind J, Oxenbøll KM, Svendsen A, Patkar S (2007) Phospholipases and their industrial applications. Appl Microbiol Biotechnol 74:290–300PubMedCrossRefGoogle Scholar
  23. Dippe M, Mrestani-Klaus C, Schierhorn A, Ulbrich-Hofmann R (2008) Phospholipase D-catalyzed synthesis of new phospholipids with polar head groups. Chem Phys Lipids 152:71–77PubMedCrossRefGoogle Scholar
  24. Dittrich N, Ulbrich-Hofmann R (2001) Transphosphatidylation by immobilized phospholipase D in aqueous media. Biotechnol Appl Biochem 34:189–194PubMedCrossRefGoogle Scholar
  25. Doig SD, Diks RMM (2003) Toolbox for exchanging constituent fatty acids in lecithins. Eur J Lipid Sci Technol 105:359–367CrossRefGoogle Scholar
  26. Driouch H, Sommer B, Wittmann C (2010) Morphology engineering of Aspergillus niger for improved enzyme production. Biotechnol Bioeng 105:1058–1068PubMedGoogle Scholar
  27. Driouch H, Hänsch R, Wucherpfennig T, Krull R, Wittmann C (2012) Improved enzyme production by bio-pellets of Aspergillus niger. Targeted morphology engineering using titanate microparticles. Biotechnol Bioeng 109:462–471PubMedCrossRefGoogle Scholar
  28. Duan Z-Q, Hu F (2013) Efficient synthesis of phosphatidylserine in 2-methyltetrahydrofuran. J Biotechnol 163:45–49PubMedCrossRefGoogle Scholar
  29. Durban MA, Silbersack J, Schweder T, Schauer F, Bornscheuer UT (2007) High level expression of a recombinant phospholipase C from Bacillus cereus in Bacillus subtilis. Appl Microbiol Biotechnol 74:634–639PubMedCrossRefGoogle Scholar
  30. Estiasih T, Ahmadi K, Ginting E, Priyanto AD (2013) Modification of soy crude lecithin by partial enzymatic hydrolysis using phospholipase A1. Int Food Res J 20:843–849Google Scholar
  31. Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Cat B: Enz 62:197–212CrossRefGoogle Scholar
  32. Fukuda H, Hama S, Tamalampudi S, Noda H (2008) Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol 26:668–673PubMedCrossRefGoogle Scholar
  33. Garcia HS, Kim I-H, Lopez-Hernandez A, Hill CG Jr (2008) Enrichment of lecithin with n-3 fatty acids by acidolysis using immobilized phospholipase A1. Grasas Y Aceites 59:368–374CrossRefGoogle Scholar
  34. Guo Z, Vikbjerg AF, Xu X (2005) Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol Adv 23:203–259PubMedCrossRefGoogle Scholar
  35. Hama S, Tamalampudi S, Fukumizu T, Miura K, Yamaji H, Kondo A, Fukuda H (2006) Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production. J Biosci Bioeng 101:328–333PubMedCrossRefGoogle Scholar
  36. Hama S, Tamalampudi S, Shindo N, Numata T, Yamaji H, Fukuda H, Kondo A (2008) Role of N-terminal 28-amino-acid region of Rhizopus oryzae lipase in directing proteins to secretory pathway of Aspergillus oryzae. Appl Microbiol Biotechnol 79:1009–1018PubMedCrossRefGoogle Scholar
  37. Hama S, Yoshida A, Nakashima K, Noda H, Fukuda H, Kondo A (2010) Surfactant-modified yeast whole-cell biocatalyst displaying lipase on cell surface for enzymatic production of structured lipids in organic media. Appl Microbiol Biotechnol 87:537–543PubMedCrossRefGoogle Scholar
  38. Hama S, Miura K, Yoshida A, Noda H, Fukuda H, Kondo A (2011) Transesterification of phosphatidylcholine in sn-1 position through direct use of lipase-producing Rhizopus oryzae cells as whole-cell biocatalyst. Appl Microbiol Biotechnol 90:1731–1738PubMedCrossRefGoogle Scholar
  39. Hama S, Onodera K, Yoshida A, Noda H, Kondo A (2015) Improved production of phospholipase A1 by recombinant Aspergillus oryzae through immobilization to control the fungal morphology under nutrient-limited conditions. Biochem Eng J 96:1–6CrossRefGoogle Scholar
  40. Hara F, Nakashima T (1996) Transesterification of phospholipids by acetone-dried cells of a Rhizopus species immobilized on biomass support particles. J Am Oil Chem Soc 73:657–659CrossRefGoogle Scholar
  41. Hara F, Nakashima T, Fukuda H (1997) Comparative study of commercially available lipases in hydrolysis reaction of phosphatidylcholine. J Am Oil Chem Soc 74:1129–1132CrossRefGoogle Scholar
  42. Hartmann M, Guberman A, Florin-Christensen M, Tiedtke A (2000) Screening for and characterization of phospholipase A1 hypersecretory mutants of Tetrahymena thermophile. Appl Microbiol Biotechnol 54:390–396PubMedCrossRefGoogle Scholar
  43. Hossen M, Hernandez E (2005) Enzyme-catalyzed synthesis of structured phospholipids with conjugated linoleic acid. Eur J Lipid Sci Technol 107:730–736CrossRefGoogle Scholar
  44. Huge-Jensen B, Andreasen F, Christensen T, Christensen M, Thim L, Boel E (1989) Rhizomucor miehei triglyceride lipase is processed and secreted from transformed Aspergillus oryzae. Lipids 24:781–785PubMedCrossRefGoogle Scholar
  45. Iwasaki Y, Mizumoto Y, Okada T, Yamamoto T, Tsutsumi K, Yamane T (2003) An aqueous suspension system for phospholipase D-mediated synthesis of PS without toxic organic solvent. J Am Oil Chem Soc 80:653–657CrossRefGoogle Scholar
  46. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397PubMedCrossRefGoogle Scholar
  47. Joshi A, Paratkar SG, Thorat BN (2006) Modification of lecithin by physical, chemical and enzymatic methods. Eur J Lipid Sci Technol 108:363–373CrossRefGoogle Scholar
  48. Kim I-H, Garcia HS, Hill CG Jr (2007) Phospholipase A1-catalyzed synthesis of phospholipids enriched in n-3 polyunsaturated fatty acid residues. Enzyme Microb Technol 40:1130–1135CrossRefGoogle Scholar
  49. Kim I-H, Garcia HS, Hill CG Jr (2010) Synthesis of structured phosphatidylcholine containing n-3 PUFA residues via acidolysis mediated by immobilized phospholipase A1. J Am Oil Chem Soc 87:1293–1299CrossRefGoogle Scholar
  50. Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21:45–52PubMedCrossRefGoogle Scholar
  51. Li X, Chen J-F, Yang B, Li D-M, Wang Y-H, Wang W-F (2014) Production of structured phosphatidylcholine with high content of DHA/EPA by immobilized phospholipase A1-catalyzed transesterification. Int J Mol Sci 15:15244–15258PubMedCentralPubMedCrossRefGoogle Scholar
  52. Liang M-H, Jiang J-G (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408PubMedCrossRefGoogle Scholar
  53. Lim CW, Kim BH, Kim I-H, Lee M-W (2015) Modeling and optimization of phospholipase A1-catalyzed hydrolysis of phosphatidylcholine using response surface methodology for lysophosphatidylcholine production. Biotechnol Prog 31:35–41PubMedCrossRefGoogle Scholar
  54. Liu N, Fu M, Wang Y, Zhao Q, Sun W, Zhao M (2012) Immobilization of Lecitase® Ultra onto a novel polystyrene DA-201 resin: characterization and biochemical properties. Appl Biochem Biotechnol 168:1108–1120PubMedCrossRefGoogle Scholar
  55. Liu Y, Zhang T, Qiao J, Liu X, Bo J, Wang J, Lu F (2014) High-yield phosphatidylserine production via yeast surface display of phospholipase D from Streptomyces chromofuscus on Pichia pastoris. J Agric Food Chem 62:5354–5360PubMedCrossRefGoogle Scholar
  56. Liu A, Yu X-W, Sha C, Xu Y (2015) Streptomyces violaceoruber phospholipase A2: expression in Pichia pastoris, properties, and application in oil degumming. Appl Biochem Biotechnol 175:3195–3206PubMedCrossRefGoogle Scholar
  57. Lopes da Silva T, Gouveia L, Reis A (2014) Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production. Appl Microbiol Biotechnol 98:1043–1053CrossRefGoogle Scholar
  58. Marsaoui N, Laplante S, Raies A, Naghmouchi K (2013) Incorporation of omega-3 polyunsaturated fatty acids into soybean lecithin: effect of amines and divalent cations on transesterification by lipases. World J Microbiol Biotechnol 29:2233–2238PubMedCrossRefGoogle Scholar
  59. Matsumoto Y, Mineta S, Murayama K, Sugimori D (2013) A novel phospholipase B from Streptomyces sp. NA684—purification, characterization, gene cloning, extracellular production and prediction of the catalytic residues. FEBS J 280:3780–3796PubMedCrossRefGoogle Scholar
  60. Nakajima J, Nakashima T, Shima Y, Fukuda H, Yamane T (1994) A facile transphosphatidylation reaction using a culture supernatant of actinomycetes directly as a phospholipase D catalyst with a chelating agent. Biotechnol Bioeng 44:1193–1198PubMedCrossRefGoogle Scholar
  61. Nakazawa Y, Sagane Y, Sakurai S, Uchino M, Sato H, Toeda K, Takano K (2011) Large-scale production of phospholipase D from Streptomyces racemochromogenes and its application to soybean lecithin modification. Appl Biochem Biotechnol 165:1494–1506PubMedCrossRefGoogle Scholar
  62. Nishio T, Kamimura M (1988) Ester synthesis in various organic solvents by three kinds of lipase preparations derived from Pseudomonas fragi 22.39 B. Agric Biol Chem 52:2631–2632CrossRefGoogle Scholar
  63. Ochoa AA, Hernández-Becerra JA, Cavazos-Garduño A, García HS, Vernon-Carter EJ (2013) Phosphatidylcholine enrichment with medium chain fatty acids by immobilized phospholipase A1-catalyzed acidolysis. Biotechnol Prog 29:230–236PubMedCrossRefGoogle Scholar
  64. Ogino C, Negi Y, Matsumiya T, Nakaoka K, Kondo A, Kuroda S, Tokuyama S, Kikkawa U, Yamane T, Fukuda H (1999) Purification, characterization, and sequence determination of phospholipase D secreted by Streptoverticillium cinnamoneum. J Biochem 125:263–269PubMedCrossRefGoogle Scholar
  65. Ogino C, Kuroda S, Tokuyama S, Kondo A, Shimizu N, Tanizawa K, Fukuda H (2003) Phospholipase D from Streptoverticillium cinnamoneum: protein engineering and application for phospholipid production. J Mol Cat B: Enz 23:107–115CrossRefGoogle Scholar
  66. Ogino C, Kanemasu M, Hayashi Y, Kondo A, Shimizu N, Tokuyama S, Tahara Y, Kuroda S, Tanizawa K, Fukuda H (2004) Over-expression system for secretory phospholipase D by Streptomyces lividans. Appl Microbiol Biotechnol 64:823–828PubMedCrossRefGoogle Scholar
  67. Ogino C, Kanemasu M, Fukumoto M, Kubo T, Yoshino T, Kondo A, Fukuda H, Shimizu N (2007) Continuous production of phospholipase D using immobilized recombinant Streptomyces lividans. Enzyme Microb Technol 41:156–161CrossRefGoogle Scholar
  68. Ogino C, Matsuda T, Okazaki F, Tanaka T, Kondo A (2014) The effect of combining signal sequences with the N28 fragment on GFP production in Aspergillus oryzae. Process Biochem 49:1078–1083CrossRefGoogle Scholar
  69. Okahata Y, Niikura K, Ijiro K (1995) Simple transphosphatidylation of phospholipids catalyzed by a lipid-coated phospholipase D in organic solvents. J Chem Soc Perkin Trans 1:919–925CrossRefGoogle Scholar
  70. Okazaki F, Aoki J, Tabuchi S, Tanaka T, Ogino C, Kondo A (2012) Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment VHH against EGFR. Appl Microbiol Biotechnol 96:81–88PubMedCrossRefGoogle Scholar
  71. Patil VV, Galge RV, Thorat BN (2010) Extraction and purification of phosphatidylcholine from soyabean lecithin. Sep Purif Technol 75:138–144CrossRefGoogle Scholar
  72. Pinsolle A, Roy P, Cansell M (2014) Modulation of enzymatic PS synthesis by liposome membrane composition. Colloids Surf B 115:157–163CrossRefGoogle Scholar
  73. Ramchuran SO, Vargas VA, Hatti-Kaul R, Karlsson EN (2006) Production of a lipolytic enzyme originating from Bacillus halodurans LBB2 in the methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol 71:463–472PubMedCrossRefGoogle Scholar
  74. Ramrakhiani L, Chand S (2011) Recent progress on phospholipases: different sources, assay methods, industrial potential and pathogenicity. Appl Biochem Biotechnol 164:991–1022PubMedCrossRefGoogle Scholar
  75. Roberts IN, Jeenes DJ, MacKenzie DA, Wilkinson AP, Sumner IG, Archer DB (1992) Heterologous gene expression in Aspergillus niger: a glucoamylase-porcine pancreatic phospholipase A2 fusion protein is secreted and processed to yield mature enzyme. Gene 122:155–161PubMedCrossRefGoogle Scholar
  76. Seo KH, Rhee JI (2004) High-level expression of recombinant phospholipase C from Bacillus cereus in Pichia pastoris and its characterization. Biotechnol Lett 26:1475–1479PubMedCrossRefGoogle Scholar
  77. Shiba Y, Ono C, Fukui F, Watanabe I, Serizawa N, Gomi K, Yoshikawa H (2001) High-level secretory production of phospholipase A1 by Saccharomyces cerevisiae and Aspergillus oryzae. Biosci Biotechnol Biochem 65:94–101PubMedCrossRefGoogle Scholar
  78. Song JK, Kim MK, Rhee JS (1999) Cloning and expression of the gene encoding phospholipase A1 from Serratia sp. MK1 in Escherichia coli. J Biotechnol 72:103–114PubMedCrossRefGoogle Scholar
  79. Song JK, Han JJ, Rhee JS (2005) Phospholipases: occurrence and production in microorganisms, assay for high-throughput screening, and gene discovery from natural and man-made diversity. J Am Oil Chem Soc 82:691–705CrossRefGoogle Scholar
  80. Song S, Cheong L-Z, Guo Z, Kristensen K, Glasius M, Jensen HM, Bertelsen K, Tan T, Xu X (2012) Phospholipase D (PLD) catalyzed synthesis of phosphatidyl-glucose in biphasic reaction system. Food Chem 135:373–379PubMedCrossRefGoogle Scholar
  81. Sugimori D, Kano K, Matsumoto Y (2012) Purification, characterization, molecular cloning and extracellular production of a phospholipase A1 from Streptomyces albidoflavus NA297. FEBS Open Bio 2:318–327PubMedCentralPubMedCrossRefGoogle Scholar
  82. Sugiyama M, Ohtani K, Izuhara M, Koike T, Suzuki K, Imamura S, Misaki H (2002) A novel prokaryotic phospholipase A2. Characterization, gene cloning, and solution structure. J Biol Chem 277:20051–20058PubMedCrossRefGoogle Scholar
  83. Takemori D, Yoshino K, Eba C, Nakano H, Iwasaki Y (2012) Extracellular production of phospholipase A2 from Streptomyces violaceoruber by recombinant Escherichia coli. Protein Expr Purif 81:145–150PubMedCrossRefGoogle Scholar
  84. Tanaka T, Yamada R, Ogino C, Kondo A (2012) Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol 95:577–591PubMedCrossRefGoogle Scholar
  85. Truan D, Vasil A, Stonehouse M, Vasil ML, Pohl E (2013) High-level over-expression, purification, and crystallization of a novel phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. Protein Expr Purif 90:40–46PubMedCentralPubMedCrossRefGoogle Scholar
  86. van den Bergh CJ, Bekkers AC, De Geus P, Verheij HM, de Haas GH (1987) Secretion of biologically active porcine prophospholipase A2 by Saccharomyces cerevisiae. Use of the prepro sequence of the alpha-mating factor. Eur J Biochem 170:241–246PubMedCrossRefGoogle Scholar
  87. Vikbjerg AF, Mu H, Xu X (2005a) Lipase-catalyzed acyl exchange of soybean phosphatidylcholine in n-hexane: a critical evaluation of both acyl incorporation and product recovery. Biotechnol Prog 21:397–404PubMedCrossRefGoogle Scholar
  88. Vikbjerg AF, Mu H, Xu X (2005b) Parameters affecting incorporation and by-product formation during the production of structured phospholipids by lipase-catalyzed acidolysis in solvent-free system. J Mol Catal B Enzym 36:14–21CrossRefGoogle Scholar
  89. Vikbjerg AF, Peng L, Mu H, Xu X (2005c) Continuous production of structured phospholipids in a packed bed reactor with lipase from Thermomyces lanuginosa. J Am Oil Chem Soc 82:237–242CrossRefGoogle Scholar
  90. Vikbjerg AF, Rusig J-Y, Jonsson G, Mu H, Xu X (2006) Strategies for lipase-catalyzed production and the purification of structured phospholipids. Eur J Lipid Sci Technol 108:802–811CrossRefGoogle Scholar
  91. Vikbjerg AF, Mu H, Xu X (2007) Synthesis of structured phospholipids by immobilized phospholipase A2 catalyzed acidolysis. J Biotechnol 128:545–554PubMedCrossRefGoogle Scholar
  92. Watanabe I, Koishi R, Yao Y, Tsuji T, Serizawa N (1999) Molecular cloning and expression of the gene encoding a phospholipase A1 from Aspergillus oryzae. Biosci Biotechnol Biochem 63:820–826PubMedCrossRefGoogle Scholar
  93. Wongsakul S, Bornscheuer UT, H-Kittikun A (2004) Lipase-catalyzed acidolysis and phospholipase D-catalyzed transphosphatidylation of phosphocholine. Eur J Lipid Sci Technol 106:665–670CrossRefGoogle Scholar
  94. Yamamoto Y, Hosokawa M, Kurihara H, Miyashita K (2008) Preparation of phosphatidylated terpenes via phospholipase D-mediated transphosphatidylation. J Am Oil Chem Soc 85:313–320CrossRefGoogle Scholar
  95. Yamamoto Y, Kurihara H, Miyashita K, Hosokawa M (2011) Synthesis of novel phospholipids that bind phenylalkanols and hydroquinone via phospholipase D-catalyzed transphosphatidylation. N Biotechnol 28:1–6PubMedCrossRefGoogle Scholar
  96. Yang B, Zhou R, Yang J-G, Wang Y-H, Wang W-F (2008) Insight into the enzymatic degumming process of soybean oil. J Am Oil Chem Soc 85:421–425CrossRefGoogle Scholar
  97. Yang H, Mu Y, Chen H, Xiu Z, Yang T (2013) Enzymatic synthesis of feruloylated lysophospholipid in a selected organic solvent medium. Food Chem 141:3317–3322PubMedCrossRefGoogle Scholar
  98. Yon JO, Lee JS, Kim BG, Kim SD, Nam DH (2008) Immobilization of Streptomyces phospholipase D on a Dowex macroporous resin. Biotechnol Bioprocess Eng 13:102–107CrossRefGoogle Scholar
  99. Yu D, Ma Y, Xue SJ, Jiang L, Shi J (2013) Characterization of immobilized phospholipase A1 on magnetic nanoparticles for oil degumming application. LWT - Food Sci Technol 50:519–525CrossRefGoogle Scholar
  100. Zhan JF, Jiang ST, Pan LJ (2013) Immobilization of phospholipase A1 using a polyvinyl alcohol-alginate matrix and evaluation of the effects of immobilization. Braz J Chem Eng 30:721–728CrossRefGoogle Scholar
  101. Zhang L, Liang S, Hellgren LI, Jonsson GE, Xu X (2008) Phospholipase C-catalyzed sphingomyelin hydrolysis in a membrane reactor for ceramide production. J Membrane Sci 325:895–902CrossRefGoogle Scholar
  102. Zhao T, No DS, Kim BH, Garcia HS, Kim Y, Kim IH (2014) Immobilized phospholipase A1-catalyzed modification of phosphatidylcholine with n-3 polyunsaturated fatty acid. Food Biochem 157:132–140Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Research & Development LaboratoryBio-energy CorporationAmagasakiJapan
  2. 2.Department of Chemical Science and Engineering, Graduate School of EngineeringKobe UniversityKobeJapan

Personalised recommendations