Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 21, pp 9177–9187 | Cite as

Development and validation of an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the quantitative determination of rhamnolipid congeners

  • Michelle Rudden
  • Konstantina Tsauosi
  • Roger Marchant
  • Ibrahim M. Banat
  • Thomas J. Smyth
Methods and protocols

Abstract

Rhamnolipids (RLs) are synthesised as a complex mixture of congeners comprising either one or two molecules of rhamnose glycosidically linked to a dimer of 3-hydroxy fatty acids varying in chain length and degree of saturation. Currently, HPLC-MS/MS is the most precise and accurate method for RL determination, while accurate quantification is limited. In this study, a rapid ultra pressure liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the rapid and quantification of individual RL congeners. Increased RLs specificity was achieved using tandem mass spectrometry in multiple reaction monitoring (MRM) mode which was used to quantify RL isomer pairs such as Rha-Rha-C8-C10/Rha-Rha-C10-C8 which are difficult to resolve chromatographically. UPLC showed an 18-fold reduction in retention time for Rha-Rha-C10-C10 (1.07 min) and a 17-fold reduction for Rha-C10-C10 (1.36), the major rhamnolipids present, compared to HPLC, with a total run time less than 2.2 min. The results show that the linear range for the main RL congeners (Rha-C10-C10 and Rha-Rha-C10-C10) is 0.1 to 100 μg/mL. The LOD and LOQ for Rha-C10-C10 is 0.05 and 0.1 μg/mL and for Rha-Rha-C10-C10 is 0.1 and 0.5 μg/mL, respectively. The method was validated for linearity, intra- and inter-day precision and accuracy in accordance with FDA guidelines. The method was applied for the quantification of 14 individual RL congeners produced by Pseudomonas aeruginosa ST5 and comparison of RLs composition on four different carbon sources. Quantification of the individual congeners showed a conserved congener distribution irrespective of carbon source with a preferential selection for C10 β-hydroxyacids as the lipid component of RLs. The only statistically significant differences detected were between actual RL yields on the various carbon sources.

Keywords

Rhamnolipids UPLC-MS/MS Quantification Congeners Triple quadrupole 

Notes

Acknowledgments

IB, RM and KT acknowledge European Commission within the FP-7 PROJECT under Grant Agreement No. 312139 ‘Integrated Biotechnological Solutions for Combating marine Oil Spills’—KILL•SPILL.

Authors also acknowledge the Institute of Biomedical Sciences, Ulster University, Coleraine, UK.

Conflict of interest

Authors declare that they have no competing interests.

Supplementary material

253_2015_6837_MOESM1_ESM.pdf (413 kb)
ESM 1 (PDF 412 kb)

References

  1. Arino S, Marchal R, Vandecasteele JP (1996) Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol 45:162–168. doi: 10.1007/s002530050665 CrossRefGoogle Scholar
  2. Chandrasekaran EV, BeMiller JN (1980) Constituent analysis of glycosaminoglycans. In: Whistler RL, Wolfrom ML (eds) Methods in carbohydrate chemistry. Academic Press, New York, pp. 89–96Google Scholar
  3. Costa SG, Nitschke M, Lépine F, Déziel E, Contiero J (2010) Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2-1 from cassava wastewater. Process Biochem 45(9):1511–1516CrossRefGoogle Scholar
  4. Déziel E, Lépine F, Dennie D, Boismenu D, Mame OA, Vilmeur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on Mannitol or naphthalene. Biochim Biophys Acta 1440:244–252. doi: 10.1016/S1388-1981(99)00129-8 CrossRefPubMedGoogle Scholar
  5. Déziel E, Lépine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta 1485(2–3):145–152CrossRefPubMedGoogle Scholar
  6. Gunther NW, Nuñez A, Fett W, Solaiman DKY (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:2288–2293. doi: 10.1128/AEM.71.5.2288-2293 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Haba E, Abalos A, Jauregui O, Espuny MJ, Manressa A (2003) Use of liquid chromatography-mass spectrometry for studying the composition and properties of rhamnolipids produced by different strains of Pseudomonas aeruginosa. J Surfactant Deterg 6:155–161. doi: 10.1007/s11743-003-0260-7
  8. Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhofer F, Brenner-Weiss G, Franzreb M, Berensmeier S (2008) Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem 391:1579–1590. doi: 10.1007/s00216-007-1828-4 CrossRefPubMedGoogle Scholar
  9. Koch AK, Kappeli O, Fiechter A, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173:4212–4219Google Scholar
  10. Li AH, Xu MY, Sun W, Sun GP (2011) Rhamnolipid production by Pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Appl Biochem Biotechnol 163(5):600–611. doi: 10.1007/s12010-010-9066-1 CrossRefPubMedGoogle Scholar
  11. Lotfabad TB, Abassi H, Ahmadkhaniha R, Roostaazad R, Masoomi F, Zahiri HS, Ahmadian G, Vali H, Noghabi KA (2010) Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Colloids Surf B: Biointerfaces 81(2):397–405. doi: 10.1016/j.colsurfb.2010.06.026 CrossRefPubMedGoogle Scholar
  12. Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30(11):558–565. doi: 10.1016/j.tibtech.2012.07.003 CrossRefPubMedGoogle Scholar
  13. Mata-Sandoval JC, Karns J, Torrents A (2001) Effect of nutritional and environmental composition of rhamnolipids by Pseudomonas aeruginosa UG2. Microbiol Res 155:249–256. doi: 10.1016/S0944-5013(01)80001-X CrossRefPubMedGoogle Scholar
  14. Monteiro SA, Sassaki GL, de Souza LM, Meira JA, de Araujo JM, Mitchell DA, Ramos LP, Krieger N (2007) Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids 147:1–13. doi: 10.1016/j.chemphyslip.2007.02.001 CrossRefPubMedGoogle Scholar
  15. Müller MM, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91(2):251–264. doi: 10.1007/s00253-011-3368-2 CrossRefPubMedGoogle Scholar
  16. Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R (2012) Rhamnolipids—next generation surfactants? J Biotechnol 162(4):366–380. doi: 10.1016/j.jbiotec.2012.05.022 CrossRefPubMedGoogle Scholar
  17. Neilson JW, Zhang L, Veres-Schalnat TA, Chandler KB, Neilson CH, Crispin JD, Pemberton JE, Maier RM (2010) Cadmium effects on transcriptional expression of rhlB/rhlC genes and congener distribution of monorhamnolipid and dirhamnolipid in Pseudomonas aeruginosa IGB83. Appl Microbiol Biotechnol 88(4):953–963. doi: 10.1007/s00253-010-2808-8 CrossRefPubMedGoogle Scholar
  18. Nitschke M, Costa SG, Conteiro J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21:1593–1600. doi: 10.1021/bp050239p CrossRefPubMedGoogle Scholar
  19. Perfumo A, Rudden M, Smyth TJ, Marchant R, Stevenson PS, Parry NJ, Banat IM (2013) Rhamnolipids are conserved biosurfactants molecules: implications for their biotechnological potential. Appl Microbiol Biotechnol 97(16):7297–7306CrossRefPubMedGoogle Scholar
  20. Rahman PK, Pasirayi G, Auger V, Ali Z (2010) Production of rhamnolipid biosurfactants by Pseudomonas aeruginosa DS10-129 in a microfluidic bioreactor. Biotechnol Appl Biochem 55(1):45–52. doi: 10.1042/BA20090277 CrossRefPubMedGoogle Scholar
  21. Samadi N, Abadian N, Ahmadkhaniha R, Amini F, Dalili D, Rastkari N, Safaripour E, Mohseni FA (2012) Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus. Folia Microbiol 57(6):501–508. doi: 10.1007/s12223-012-0164-z CrossRefGoogle Scholar
  22. Sim L, Ward OP, Li ZY (1997) Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J Ind Microbiol Biotechnol 19:232–238. doi: 10.1038/sj.jim.2900450 CrossRefPubMedGoogle Scholar
  23. Smyth TJP, Perfumo A, Marchant R, Banat IM (2010) Isolation and analysis of low molecular weight microbial glycolipids. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, pp. 3705–3723Google Scholar
  24. USFDA (2001). Guidance for industry. Bioanalytical method validation. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070107.pdf (accessed January 2014).
  25. Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282PubMedCentralPubMedGoogle Scholar
  26. Zhang L, Veres-Schalnat TA, Somogyi A, Pemberton JE, Maier RM (2012) Fatty acid cosubstrates provide β-oxidation precursors for rhamnolipid biosynthesis in Pseudomonas aeruginosa, as evidenced by isotope tracing and gene expression assays. Appl Environ Microbiol (24):8611–8622. doi: 10.1128/AEM.02111-12
  27. Zhu K, Rock CO (2008) RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190(9):3147–3154. doi: 10.1128/JB.00080-08 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Michelle Rudden
    • 1
  • Konstantina Tsauosi
    • 1
  • Roger Marchant
    • 1
  • Ibrahim M. Banat
    • 1
  • Thomas J. Smyth
    • 2
    • 3
  1. 1.School of Biomedical ScienceUlster UniversityColeraineUK
  2. 2.Department of Life SciencesInstitute of Technology Sligo, Co.SligoRepublic of Ireland
  3. 3.Teagasc Food Research Centre AshtownDublinIreland

Personalised recommendations