Applied Microbiology and Biotechnology

, Volume 99, Issue 21, pp 9049–9060 | Cite as

Improved ethanol production from biomass by a rumen metagenomic DNA fragment expressed in Escherichia coli MS04 during fermentation

  • Inés Loaces
  • Vanesa Amarelle
  • Iván Muñoz-Gutierrez
  • Elena Fabiano
  • Alfredo Martinez
  • Francisco Noya
Applied genetics and molecular biotechnology

Abstract

With the aim of improving current ethanologenic Escherichia coli strains, we screened a metagenomic library from bovine ruminal fluid for cellulolytic enzymes. We isolated one fosmid, termed Csd4, which was able to confer to E. coli the ability to grow on complex cellulosic material as the sole carbon source such as avicel, carboxymethyl cellulose, filter paper, pretreated sugarcane bagasse, and xylan. Glucanolytic activity obtained from E. coli transformed with Csd4 was maximal at 24 h of incubation and was inhibited when glucose or xylose were present in the media. The 34,406-bp DNA fragment of Csd4 was completely sequenced, and a putative endoglucanase, a xylosidase/arabinosidase, and a laccase gene were identified. Comparison analysis revealed that Csd4 derived from an organism closely related to Prevotella ruminicola, but no homologies were found with any of the genomes already sequenced. Csd4 was introduced into the ethanologenic E. coli MS04 strain and ethanol production from CMC, avicel, sugarcane bagasse, or filter paper was observed. Exogenously expressed β-glucosidase had a positie effect on cell growth in agreement with the fact that no putative β-glucosidase was found in Csd4. Ethanol production from sugarcane bagasse was improved threefold by Csd4 after saccharification by commercial Trichoderma reesei cellulases underlining the ability of Csd4 to act as a saccharification enhancer to reduce the enzymatic load and time required for cellulose deconstruction.

Keywords

Rumen metagenomics CBP Cellulolytic enzymes Bioethanol Biomass hydrolysis 

Notes

Acknowledgments

We are very grateful to Nikolai Guchin (ANCAP, Uruguay) for providing valuable materials and helpful advice. Special thanks to Betiana Bouzas (Frigorífico Pando, Uruguay) for providing access to bovine rumen samples. This work was supported by grants #FSE_2009_23 and #FSE_2011_6383 from Agencia Nacional de Investigación e Innovación (ANII, Uruguay) and grant #FPTA-256 from Instituto Nacional de Investigación Agropecuaria (INIA, Uruguay). IL and FN were also supported by the Programa de Desarrollo de las Ciencias Básicas (PEDECIBA, Uruguay), by Sistema Nacional de Investigadores (SNI, Uruguay), and by the bilateral international cooperation (Fondo Conjunto de Cooperación Uruguay-México) of Secretaría de Relaciones Exteriores, México, and Agencia Mexicana de Cooperación Internacional para el Desarrollo (SRE-AMEXCID, México).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aagaard K, Petrosino J, Keitel W, Watson M, Katancik J, Garcia N, Patel S, Cutting M, Madden T, Hamilton H, Harris E, Gevers D, Simone G, McInnes P, Versalovic J (2013) The human microbiome project strategy for comprehensive sampling of the human microbiome and why it matters. FASEB J 27(3):1012–1022. doi: 10.1096/fj.12-220806 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Aakvik T, Lale R, Liles M, Valla S (2011) Metagenomic libraries for functional screening. In: Handbook of molecular microbial ecology I. John Wiley & Sons, Inc., pp 171-181Google Scholar
  3. Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B (2012) Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 12:186PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bao L, Huang Q, Chang L, Zhou J, Lu H (2011) Screening and characterization of a cellulase with endocellulase and exocellulase activity from yak rumen metagenome. J Mol Catalysis B: Enzymatic 73(1-4):104–110. doi: 10.1016/j.molcatb.2011.08.006 CrossRefGoogle Scholar
  5. Barker I, Petersen L, Reilly J (2010) Mechanism of xylobiose hydrolysis by GH43 b-xylosidase. J Phys Chem 114:15389–15393CrossRefGoogle Scholar
  6. Beall DS, Ohta K, Ingram LO (1991) Parametric studies of ethanol production form xylose and other sugars by recombinant Escherichia coli. Biotechnol Bioeng 38(3):296–303. doi: 10.1002/bit.260380311 CrossRefPubMedGoogle Scholar
  7. Beloqui A, Pita M, Polaina J, Martinez-Arias A, Golyshina OV, Zumarraga M, Yakimov MM, Garcia-Arellano H, Alcalde M, Fernandez VM, Elborough K, Andreu JM, Ballesteros A, Plou FJ, Timmis KN, Ferrer M, Golyshin PN (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem 281(32):22933–22942. doi: 10.1074/jbc.M600577200 CrossRefPubMedGoogle Scholar
  8. Bhat A, Riyaz-Ul-Hassan S, Ahmad N, Srivastava N, Johri S (2013) Isolation of cold-active, acidic endocellulase from Ladakh soil by functional metagenomics. Extremophiles 17(2):229–239CrossRefPubMedGoogle Scholar
  9. Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci U S A 106(6):1948–1953. doi: 10.1073/pnas.0806191105 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res 37(Database issue):D233–D238. doi: 10.1093/nar/gkn663 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Chang L, Ding M, Bao L, Chen Y, Zhou J, Lu H (2011) Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms. Appl Microbiol Biotechnol 90(6):1933–1942. doi: 10.1007/s00253-011-3182-x CrossRefPubMedGoogle Scholar
  12. Cheema TA, Jirajaroenrat K, Sirinarumitr T, Rakshit SK (2012) Isolation of a gene encoding a cellulolytic enzyme from swamp buffalo rumen metagenomes and its cloning and expression in Escherichia coli. Anim Biotechnol 23(4):261–277. doi: 10.1080/10495398.2012.722156 CrossRefPubMedGoogle Scholar
  13. Creevey CJ, Kelly WJ, Henderson G, Leahy SC (2014) Determining the culturability of the rumen bacterial microbiome. Microb Biotechnol 7(5):467–479. doi: 10.1111/1751-7915.12141 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Dai X, Zhu Y, Luo Y, Song L, Liu D, Liu L, Chen F, Wang M, Li J, Zeng X, Dong Z, Hu S, Li L, Xu J, Huang L, Dong X (2012) Metagenomic insights into the fibrolytic microbiome in yak rumen. PLoS ONE 7(7), e40430. doi: 10.1371/journal.pone.0040430 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Dashtban M, Maki M, Leung KT, Mao C, Qin W (2010) Cellulase activities in biomass conversion: Measurement methods and comparison. Crit Rev Biotechnol 30(4):302–309CrossRefPubMedGoogle Scholar
  16. Duan CJ, Feng JX (2010) Mining metagenomes for novel cellulase genes. Biotechnol Lett 32(12):1765–1775. doi: 10.1007/s10529-010-0356-z CrossRefPubMedGoogle Scholar
  17. Duan CJ, Xian L, Zhao GC, Feng Y, Pang H, Bai XL, Tang JL, Ma QS, Feng JX (2009) Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol 107(1):245–256. doi: 10.1111/j.1365-2672.2009.04202.x CrossRefPubMedGoogle Scholar
  18. Edwards MC, Henriksen ED, Yomano LP, Gardner BC, Sharma LN, Ingram LO, Doran Peterson J (2011) Addition of genes for cellobiase and pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich lignocellulosic biomass. Appl Environ Microbiol 77(15):5184–5191. doi: 10.1128/aem.05700-11 PubMedCentralCrossRefPubMedGoogle Scholar
  19. Fernández-Sandoval MT, Huerta-Beristain G, Trujillo-Martínez B, Bustos P, González V, Bolivar F, Gosset G, Martínez A (2012) Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium. Appl Microbiol Biotechnol 96(5):1291–1300. doi: 10.1007/s00253-012-4177-y CrossRefPubMedGoogle Scholar
  20. Ferrer M, Ghazi A, Beloqui A, Vieites JM, López-Cortés N, Marín-Navarro J, Nechitaylo TY, Guazzaroni M-E, Polaina J, Waliczek A (2012a) Functional metagenomics unveils a multifunctional glycosyl hydrolase from the family 43 catalysing the breakdown of plant polymers in the calf rumen. PLoS ONE 7(6), e38134PubMedCentralCrossRefPubMedGoogle Scholar
  21. Ferrer M, Ghazi A, Beloqui A, Vieites JM, López-Cortés N, Marín-Navarro J, Nechitaylo TY, Guazzaroni ME, Polaina J, Waliczek A, Chernikova TN, Reva ON, Golyshina OV, Golyshin PN (2012b) Functional metagenomics unveils a multifunctional glycosyl hydrolase from the family 43 catalysing the breakdown of plant polymers in the calf rumen. PLoS ONE 7(6), e38134. doi: 10.1371/journal.pone.0038134 PubMedCentralCrossRefPubMedGoogle Scholar
  22. French CE, Barnard DK, Fletcher E, Kane SD, Lakhundi SS, Liu C-K, Elfick A (2013) Synthetic biology for biomass conversion. In: Suib SL (ed) New and future developments in catalysis. Elsevier, Amsterdam, pp 115–140CrossRefGoogle Scholar
  23. Gao D, Uppugundla N, Chundawat S, Yu X, Hermanson S, Gowda K, Brumm P, Mead D, Balan V, Dale B (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4(1):5PubMedCentralCrossRefPubMedGoogle Scholar
  24. Gong X, Gruninger RJ, Qi M, Paterson L, Forster RJ, Teather RM, McAllister TA (2012) Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC Res Notes 5:566. doi: 10.1186/1756-0500-5-566 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Gong X, Gruniniger RJ, Forster RJ, Teather RM, McAllister TA (2013) Biochemical analysis of a highly specific, ph stable xylanase gene identified from a bovine rumen-derived metagenomic library. Appl Microbiol Biotechnol 97(6):2423–2431. doi: 10.1007/s00253-012-4088-y CrossRefPubMedGoogle Scholar
  26. Gruninger RJ, Gong X, Forster RJ, McAllister TA (2014) Biochemical and kinetic characterization of the multifunctional β-glucosidase/β-xylosidase/α-arabinosidase, Bgxa1. Appl Microbiol Biotechnol 98(7):3003–3012. doi: 10.1007/s00253-013-5191-4 CrossRefPubMedGoogle Scholar
  27. Gupta V, Natarajan C, Kumar K, Prasanna R (2011) Identification and characterization of endoglucanases for fungicidal activity in Anabaena laxa (cyanobacteria). J Appl Phycol 23(1):73–81. doi: 10.1007/s10811-010-9539-1 CrossRefGoogle Scholar
  28. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467. doi: 10.1126/science.1200387 CrossRefPubMedGoogle Scholar
  29. Horn S, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5(1):45PubMedCentralCrossRefPubMedGoogle Scholar
  30. Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martínez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15(5):855–866. doi: 10.1021/bp9901062 CrossRefPubMedGoogle Scholar
  31. Kim M, Morrison M, Yu Z (2011) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76(1):49–63. doi: 10.1111/j.1574-6941.2010.01029.x CrossRefPubMedGoogle Scholar
  32. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109(4):1083–1087. doi: 10.1002/bit.24370 CrossRefPubMedGoogle Scholar
  33. Ko KC, Lee JH, Han Y, Choi JH, Song JJ (2013) A novel multifunctional cellulolytic enzyme screened from metagenomic resources representing ruminal bacteria. Biochem Biophys Res Commun 441(3):567–572. doi: 10.1016/j.bbrc.2013.10.120 CrossRefPubMedGoogle Scholar
  34. Kojima M, Akahoshi T, Okamoto K, Yanase H (2012) Expression and surface display of Cellulomonas endoglucanase in the ethanologenic bacterium Zymobacter palmae. Appl Microbiol Biotechnol 96(4):1093–1104. doi: 10.1007/s00253-012-4424-2 CrossRefPubMedGoogle Scholar
  35. Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7(1):135PubMedCentralCrossRefPubMedGoogle Scholar
  36. Leis B, Angelov A, Liebl W (2013) Screening and expression of genes from metagenomes. Adv Appl Microbiol 83:1–68. doi: 10.1016/B978-0-12-407678-5.00001-5 CrossRefPubMedGoogle Scholar
  37. Linger JG, Adney WS, Darzins A (2010) Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Appl Environ Microbiol 76(19):6360–6369. doi: 10.1128/AEM.00230-10 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577. doi: 10.1128/mmbr.66.3.506-577.2002 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Lynd LR, Zyl WHV, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: An update. Curr Opin Biotechnol 16(5):577–583. doi: 10.1016/j.copbio.2005.08.009 CrossRefPubMedGoogle Scholar
  40. Margeot A, Hahn-Hägerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20(3):372–380. doi: 10.1016/j.copbio.2009.05.009 CrossRefPubMedGoogle Scholar
  41. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC (2012) IMG: The integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40(D1):D115–D122. doi: 10.1093/nar/gkr1044 PubMedCentralCrossRefPubMedGoogle Scholar
  42. Martin M, Biver S, Steels S, Barbeyron T, Jam M, Portetelle D, Michel G, Vandenbol M (2014) Identification and characterization of a halotolerant, cold-active marine endo-β-1,4-glucanase by using functional metagenomics of seaweed-associated microbiota. Appl Environ Microbiol 80(16):4958–4967PubMedCentralCrossRefPubMedGoogle Scholar
  43. Martínez A, Grabar TB, Shanmugam KT, Yomano LP, York SW, Ingram LO (2007) Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol Lett 29(3):397–404. doi: 10.1007/s10529-006-9252-y CrossRefPubMedGoogle Scholar
  44. Merino S, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. In: Olsson L (ed) Biofuels. Advances in biochemical engineering/biotechnology, vol 108. Springer, Berlin, pp 95–120Google Scholar
  45. Mingardon F, Chanal A, Tardif C, Fierobe H-P (2011) The issue of secretion in heterologous expression of Clostridium cellulolyticum cellulase-encoding genes in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 77(9):2831–2838. doi: 10.1128/aem.03012-10 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Muñoz-Gutiérrez I, Martínez A (2013) Polysaccharide hydrolysis with engineered Escherichia coli for the production of biocommodities. J Ind Microbiol Biotechnol 40(5):401–410. doi: 10.1007/s10295-013-1245-y CrossRefPubMedGoogle Scholar
  47. Muñoz-Gutiérrez I, Oropeza R, Gosset G, Martínez A (2012) Cell surface display of a b-glucosidase employing the type V secretion system on ethanologenic Escherichia coli for the fermentation of cellobiose to ethanol. J Ind Microbiol Biotechnol 39(8):1141–1152. doi: 10.1007/s10295-012-1122-0 CrossRefPubMedGoogle Scholar
  48. Muñoz-Gutiérrez I, Moss-Acosta C, Trujillo-Martínez B, Gosset G, Martínez A (2014) Ag43-mediated display of a thermostable b-glucosidase in Escherichia coli and its use for simultaneous saccharification and fermentation at high temperatures. Microb Cell Fact 13(1):106PubMedCentralCrossRefPubMedGoogle Scholar
  49. Nguyen NH, Maruset L, Uengwetwanit T, Mhuantong W, Harnpicharnchai P, Champreda V, Tanapongpipat S, Jirajaroenrat K, Rakshit SK, Eurwilaichitr L, Pongpattanakitshote S (2012) Identification and characterization of a cellulase-encoding gene from the buffalo rumen metagenomic library. Biosci Biotechnol Biochem 76(6):1075–1084. doi: 10.1271/bbb.110786 CrossRefPubMedGoogle Scholar
  50. Ni J, Tokuda G (2013) Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31(6):838–850. doi: 10.1016/j.biotechadv.2013.04.005 CrossRefPubMedGoogle Scholar
  51. Noguchi H, Park J, Takagi T (2006) Metagene: Prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res 34(19):5623–5630. doi: 10.1093/nar/gkl723 PubMedCentralCrossRefPubMedGoogle Scholar
  52. Olofsson K, Bertilsson M, Lidén G (2008) A short review on ssf - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1(1):7PubMedCentralCrossRefPubMedGoogle Scholar
  53. Orencio-Trejo M, Utrilla J, Fernández-Sandoval MT, Huerta-Beristain G, Gosset G, Martínez A (2010) Engineering the Escherichia coli fermentative metabolism. In: Wittmann C, Krull R (eds) Biosystems engineering II. Advances in biochemical engineering / biotechnology, vol 121. Springer, Berlin, pp 71–107Google Scholar
  54. Purushe J, Fouts D, Morrison M, White B, Mackie R, Coutinho P, Henrissat B, Nelson K (2010) Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: Insights into their environmental niche. Microb Ecol 60(4):721–729. doi: 10.1007/s00248-010-9692-8 CrossRefPubMedGoogle Scholar
  55. Rashamuse KJ, Visser DF, Hennessy F, Kemp J, Roux-van der Merwe MP, Badenhorst J, Ronneburg T, Francis-Pope R, Brady D (2013) Characterisation of two bifunctional cellulase-xylanase enzymes isolated from a bovine rumen metagenome library. Curr Microbiol 66(2):145–151. doi: 10.1007/s00284-012-0251-z CrossRefPubMedGoogle Scholar
  56. Rodríguez MC, Loaces I, Amarelle V, Senatore D, Iriarte A, Fabiano E, Noya F (2015) Est10: A novel alkaline esterase isolated from bovine rumen belonging to the new family XV of lipolytic enzymes. PLoS ONE 10(5), e0126651. doi: 10.1371/journal.pone.0126651 PubMedCentralCrossRefPubMedGoogle Scholar
  57. Ross E, Moate P, Bath C, Davidson S, Sawbridge T, Guthridge K, Cocks B, Hayes B (2012) High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing. BMC Genet 13(1):53PubMedCentralCrossRefPubMedGoogle Scholar
  58. Ryu S, Karim M (2011) A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates. Appl Microbiol Biotechnol 91(3):529–542. doi: 10.1007/s00253-011-3261-z CrossRefPubMedGoogle Scholar
  59. Sainz M (2009) Commercial cellulosic ethanol: The role of plant-expressed enzymes. Vitro Cell Dev Biol Plant 45(3):314–329. doi: 10.1007/s11627-009-9210-1 CrossRefGoogle Scholar
  60. Shin H-D, McClendon S, Vo T, Chen RR (2010) Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel. Appl Environ Microbiol 76(24):8150–8159. doi: 10.1128/aem.00908-10 PubMedCentralCrossRefPubMedGoogle Scholar
  61. Spiridonov NA, Wilson DB (2001) Cloning and biochemical characterization of Bglc, a β-glucosidase from the cellulolytic actinomycete Thermobifida fusca. Curr Microbiol 42(4):295–301. doi: 10.1007/s002840110220 PubMedGoogle Scholar
  62. Tao L, Schell D, Davis R, Tan E, Elander R, Bratis A (2014) NREL 2012 achievement of ethanol cost targets: Biochemical ethanol fermentation via dilute-acid pretreatment and enzymatic hydrolysis of corn stover. In: Technical Report NREL/TP-5100-61563, NREL, U.S. Department of Energy, Golden, ColoradoGoogle Scholar
  63. Teather RM, Wood PJ (1982) Use of Congo Red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43(4):777–780PubMedCentralPubMedGoogle Scholar
  64. van Tilbeurgh H, Loontiens FG, De Bruyne CK, Claeyssens M (1988) Fluorogenic and chromogenic glycosides as substrates and ligands of carbohydrases. Methods Enzymol 160:45–59. doi: 10.1016/0076-6879(88)60106-6 CrossRefGoogle Scholar
  65. Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126(1):26–36. doi: 10.1016/j.jbiotec.2006.02.011 CrossRefPubMedGoogle Scholar
  66. Wang L, Hatem A, Catalyurek UV, Morrison M, Yu Z (2013) Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows. PLoS ONE 8(11), e78507. doi: 10.1371/journal.pone.0078507 PubMedCentralCrossRefPubMedGoogle Scholar
  67. White BA, Lamed R, Bayer EA, Flint HJ (2014) Biomass utilization by gut microbiomes. Annu Rev Microbiol 68(1):279–296. doi: 10.1146/annurev-micro-092412-155618 CrossRefPubMedGoogle Scholar
  68. Wu S, Zhu Z, Fu L, Niu B, Li W (2011) WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 12(1):444PubMedCentralCrossRefPubMedGoogle Scholar
  69. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1-2):203–214. doi: 10.1089/10665270050081478 CrossRefPubMedGoogle Scholar
  70. Zhao S, Wang J, Bu D, Liu K, Zhu Y, Dong Z, Yu Z (2010) Novel glycoside hydrolases identified by screening a chinese holstein dairy cow rumen-derived metagenome library. Appl Environ Microbiol 76(19):6701–6705. doi: 10.1128/aem.00361-10 PubMedCentralCrossRefPubMedGoogle Scholar
  71. Zheng Z, Chen T, Zhao M, Wang Z, Zhao X (2012) Engineering Escherichia coli for succinate production from hemicellulose via consolidated bioprocessing. Microb Cell Fact 11(1):37PubMedCentralCrossRefPubMedGoogle Scholar
  72. Zhou J, Bao L, Chang L, Liu Z, You C, Lu H (2012) β-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Lett Appl Microbiol 54(2):79–87. doi: 10.1111/j.1472-765X.2011.03175.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Inés Loaces
    • 1
  • Vanesa Amarelle
    • 1
  • Iván Muñoz-Gutierrez
    • 2
    • 3
  • Elena Fabiano
    • 1
  • Alfredo Martinez
    • 2
  • Francisco Noya
    • 1
  1. 1.Departamento de Bioquímica y Genómica MicrobianasInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
  2. 2.Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
  3. 3.Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations