Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 21, pp 9123–9134 | Cite as

Comparative phenomics and targeted use of genomics reveals variation in carbon and nitrogen assimilation among different Brettanomyces bruxellensis strains

  • S. Crauwels
  • A. Van Assche
  • R. de Jonge
  • A. R. Borneman
  • C. Verreth
  • P. Troels
  • G. De Samblanx
  • K. Marchal
  • Y. Van de Peer
  • K. A. Willems
  • K. J. Verstrepen
  • C. D. Curtin
  • B. Lievens
Applied microbial and cell physiology

Abstract

Recent studies have suggested a correlation between genotype groups of Brettanomyces bruxellensis and their source of isolation. To further explore this relationship, the objective of this study was to assess metabolic differences in carbon and nitrogen assimilation between different B. bruxellensis strains from three beverages, including beer, wine, and soft drink, using Biolog Phenotype Microarrays. While some similarities of physiology were noted, many traits were variable among strains. Interestingly, some phenotypes were found that could be linked to strain origin, especially for the assimilation of particular α- and β-glycosides as well as α- and β-substituted monosaccharides. Based upon gene presence or absence, an α-glucosidase and β-glucosidase were found explaining the observed phenotypes. Further, using a PCR screen on a large number of isolates, we have been able to specifically link a genomic deletion to the beer strains, suggesting that this region may have a fitness cost for B. bruxellensis in certain fermentation systems such as brewing. More specifically, none of the beer strains were found to contain a β-glucosidase, which may have direct impacts on the ability for these strains to compete with other microbes or on flavor production.

Keywords

α-Glucosidase β-Glucosidase Biolog Dekkera bruxellensis Niche adaptation Phenotypic and genetic diversity 

Notes

Acknowledgments

We are grateful to everybody who provided us with Brettanomyces strains. Further, we are grateful to Sofie Malfliet for her help with compiling the tables.

Compliance with ethical standards

Disclosure of potential conflicts of interest/Research involving Human Participants and/or Animals/ Informed consent: not applicable for this study.

Supplementary material

253_2015_6769_MOESM1_ESM.pdf (685 kb)
ESM 1 (PDF 684 kb)

References

  1. Albertin W, Panfili A, Miot-Sertier C, Goulielmakis A, Delcamp A, Salin F, Lonvaud-Funel A, Curtin C, Masneuf-Pomarède I (2014) Development of microsatellite markers for the rapid and reliable genotyping of Brettanomyces bruxellensis at strain level. Food Microbiol 42:188–195CrossRefPubMedGoogle Scholar
  2. Bell SJ, Henschke PA (2005) Implications of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine Res 11:242–295CrossRefGoogle Scholar
  3. Bochner BR (2003) New technologies to assess genotype-phenotype relationships. Nat Rev 4:309–314CrossRefGoogle Scholar
  4. Borneman AR, Zeppel R, Chambers PJ, Curtin CD (2014) Insights into the Dekkera bruxellensis genomic landscape: comparative genomics reveals variation in ploidy and nutrient utilization potential amongst wine isolates. PLoS Genet 10, e1004161PubMedCentralCrossRefPubMedGoogle Scholar
  5. Chatonnet P, Dubourdie D, Boidron J, Pons M (1992) The origin of ethylphenols in wines. J Sci Food Agric 60:165–178Google Scholar
  6. Conterno L, Lucy Joseph CM, Arvik TJ, Henick-Kling T, Bisson LF (2006) Genetic and physiological characterization of Brettanomyces bruxellensis strains isolated from wines. Am J Enol Vitic 75:139–147Google Scholar
  7. Cosentino S, Fadda ME, Deplano M, Mulargia AF, Palmas F (2001) Yeasts associated with Sardinian ewe’s dairy products. Int J Food Microbiol 69:53–58CrossRefPubMedGoogle Scholar
  8. Coton E, Coton M, Levert D, Casaregola S, Sohier D (2006) Yeast ecology in French cider and black olive natural fermentations. Int J Food Microbiol 108:130–135CrossRefPubMedGoogle Scholar
  9. Crauwels S, Zhu B, Steensels J, Busschaert P, De Samblanx G, Marchal K, Willems KA, Verstrepen K, Lievens B (2014) Assesing genetic diversity among Brettanomyces yeast by DNA fingerprinting and whole genome sequencing. Appl Environ Microbiol 80:4398–4413PubMedCentralCrossRefPubMedGoogle Scholar
  10. Curtin CD, Bellon JR, Henscke PA, Godden PW, de Barros Lopes MA (2007) Genetic diversity of Dekkera bruxellensis yeast isolated from Australian wineries. FEMS Yeast Res 7:471–481CrossRefPubMedGoogle Scholar
  11. Curtin CD, Borneman AR, Chambers PJ, Pretorius IS (2012) De-novo assembly and analysis of the heterozygous triploid genome of the wine spoilage yeast Dekkera bruxellensis AWRI1499. PLoS ONE 7:1–10CrossRefGoogle Scholar
  12. Daenen L, Vanderhaegen B, Verachter H, Derdelinckx G (2004) Flavour enhancement in beer by yeast beta-glucosidase activity. Commun Agric Appl Biol Sci 69:73–76PubMedGoogle Scholar
  13. de Barros Lopes M, Rainieri S, Henschke PA, Langridge P (1999) AFLP fingerprinting for analysis of yeast genetic variation. Int J Syst Bacteriol 49:915–924CrossRefPubMedGoogle Scholar
  14. de Souza Liberal A, Basilio A, do Monte Resende A, Brasileiro B, da Silva-Filho E, de Morais J, Simoes D, de Morais M (2007) Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J Appl Microbiol 102:538–547Google Scholar
  15. Douglas H, Hawthorne D (1964) Enzymatic expression and genetic linkage of genes controlling galactose utilization in saccharomyces. Genetics 49:837–844.Google Scholar
  16. Fugelsang KC (1997) Wine microbiology. Chapman and Hall, New YorkCrossRefGoogle Scholar
  17. Hittinger CT, Gonçalves P, Sampaio JP, Dover J, Johnston M, Rokas A (2010) Remarkably ancient balanced polymorphisms in a multi-locus gene network. Nature 464:54–58PubMedCentralCrossRefPubMedGoogle Scholar
  18. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30PubMedCentralCrossRefPubMedGoogle Scholar
  19. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205PubMedCentralCrossRefPubMedGoogle Scholar
  20. Kliewer WM (1967) Annual cyclic changes in the concentration of free amino acids in grapevines. Am J Enol Vitic 18:126–137Google Scholar
  21. Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359PubMedCentralCrossRefPubMedGoogle Scholar
  22. Laureys D, De Vuyst L (2014) Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation. Appl Environ Microbiol 80:2564–2572PubMedCentralCrossRefPubMedGoogle Scholar
  23. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map (SAM) format and SAMtools. J Bioinforma 25:2078–2079CrossRefGoogle Scholar
  24. Licker JL, Acree TE, Henick-Kling T (1998) What is “Brett” (Brettanomyces) flavour? A preliminary investigation. In: Waterhouse AL, Ebeler SE (eds) Chemistry of wine flavour. Symposium series. American Chemical Society, Washington, DC, pp 96–115CrossRefGoogle Scholar
  25. Lievens B, Brouwer M, Vanachter ACRC, Lévesque CA, Cammue BPA, Thomma BPHJ (2003) Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogens. FEMS Microbiol Lett 223:113–122CrossRefPubMedGoogle Scholar
  26. Loureiro V, Malfeito-Ferreira M (2003) Spoilage yeasts in the wine industry. Int J Food Microbiol 86:23–50CrossRefPubMedGoogle Scholar
  27. Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18CrossRefPubMedGoogle Scholar
  28. Martens H, Iserentant D, Verachtert H (1997) Microbial aspects of a mixed yeast-bacterial fermentation in the production of a special Belgian acidic ale. J Inst Brew 103:85–91CrossRefGoogle Scholar
  29. Martorell P, Barata A, Malfeito-Ferreira M, Fernandez-Espinar MT, Loureiro V, Querol A (2006) Molecular typing of the yeast species Dekkera bruxellensis and Pichia guilliermondii recovered from wine related sources. Int J Food Microbiol 106:79–84CrossRefPubMedGoogle Scholar
  30. Miot-Sertier C, Lonvaud-Funel A (2007) Development of a molecular method for the typing of Brettanomyces bruxellensis (Dekkera bruxellensis) at the strain level. J Appl Microbiol 102:555–562CrossRefPubMedGoogle Scholar
  31. Mitrakul CM, Henick-Kling T, Egli CM (1999) Discrimination of Brettanomyces/Dekkera yeast isolates from wine by using various DNA fingerprinting methods. Food Microbiol 16:3–4CrossRefGoogle Scholar
  32. Morrissey WF, Davenport B, Querol A, Dobson ADW (2004) The role of indigenous yeasts in traditional Irish cider fermentations. J Appl Microbiol 97:647–655CrossRefPubMedGoogle Scholar
  33. Oelofse A, Lonvaud-Funel A, du Toit M (2009) Molecular identification of Brettanomyces bruxellensis strains isolated from red wines and volatile phenol production. Food Microbiol 26:377–385CrossRefPubMedGoogle Scholar
  34. Passoth V, Blomqvist J, Schnürer J (2007) Dekkera bruxellensis and Lactobacillus vini form a stable ethanol producing consortium in a commercial alcohol production process. Appl Environ Microbiol 73:4354–4356PubMedCentralCrossRefPubMedGoogle Scholar
  35. Piskur J, Ling Z, Marcet-Houben M, Ishchuk O, Aerts A, LaButti K, Copeland A, Lindquist E, Barry K, Compagno C, Bisson L, Grigoriev I, Gabaldon T, Phister T (2012) The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties. Int J Food Microbiol 157:202–209Google Scholar
  36. Pogorzelski E, Wilkowska A (2007) Flavour enhancement through the enzymatic hydrolysis of glycosidic aroma precursors in juice and wine beverages: a review. Flavour Fragr J 22:251–254CrossRefGoogle Scholar
  37. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842PubMedCentralCrossRefPubMedGoogle Scholar
  38. R Development Core Team (2006) R: a language and environment for statistical computing. R foundation for statistical computing, ViennaGoogle Scholar
  39. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:265–386Google Scholar
  40. Schifferdecker A, Dashko S, Ishchuk O, Piskur J (2014) The wine and beer yeast Dekkera bruxellensis. Yeast 31:323–332Google Scholar
  41. Steensels J, Daenen L, Malcorps P, Derderlinckx G, Verachtert H, Verstrepen K (2015) Brettanomyces yeast- from spoilage organism to valuable contributors to industrial fermentation. Int J Food Microbiol 206:24–38Google Scholar
  42. Teoh AL, Heard G, Cox J (2004) Yeast ecology of Kombucha fermentation. Int J Food Microbiol 95:119–126CrossRefPubMedGoogle Scholar
  43. Ting SV, Rouseff RL (1979) Proline content in Florida frozen concentrated orange juice and canned grapefruit juice. Proc Fla State Hortic Soc 92:143–145Google Scholar
  44. Vaas LAI, Sikorsky J, Hofner B, Fiebig A, Buddruhs N, Klenk HPG, Göker M (2013) Opm: an R package for analysing OmniLog® Phenotype MicroArray Data. Bioinformatics 29:1823–1824CrossRefPubMedGoogle Scholar
  45. Vanbeneden N, Gils F, Delvaux G, Delvaux FR (2008) Formation of 4-vinyl and 4-ethyl derivatives from hydroxycinnamic acids: occurrence of volatile phenolic flavour compounds in beer and distribution of Pad 1-activity among brewing yeasts. Food Chem 107:221–230CrossRefGoogle Scholar
  46. Vigentini I, De Lorenzis G, Picozzi C, Imazio S, Merico A, Galafassi S, Piskur J, Foschino R (2012) Intraspecific variations of Dekkera/Brettanomyces bruxellensis genome studied by capillary electrophoresis separation of the intron splice site profiles. Int J Food Microbiol 157:6–15CrossRefPubMedGoogle Scholar
  47. Yamada Y, Matsuda M, Maeda K, Mikata K (1994) The phylogenetic relationships of species of the genus Dekkera Van Der Walt based on the partial sequences of 18S and 26S ribosomal RNAs (Saccharomycetaceae). Biosci Biotechnol Biochem 58:1803–1808CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. Crauwels
    • 1
  • A. Van Assche
    • 1
  • R. de Jonge
    • 2
  • A. R. Borneman
    • 3
  • C. Verreth
    • 1
  • P. Troels
    • 4
  • G. De Samblanx
    • 1
  • K. Marchal
    • 5
  • Y. Van de Peer
    • 2
  • K. A. Willems
    • 1
  • K. J. Verstrepen
    • 6
  • C. D. Curtin
    • 3
  • B. Lievens
    • 1
  1. 1.Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)KU LeuvenSint-Katelijne WaverBelgium
  2. 2.Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
  3. 3.The Australian Wine Research InstituteAdelaideAustralia
  4. 4.White LabsSan DiegoUSA
  5. 5.Department of Plant Biotechnology and Bioinformatics and Department of Information Technology, IMindsGhent UniversityGhentBelgium
  6. 6.VIB Lab for Systems Biology and Centre of Microbial and Plant Genetics (CMPG) Lab for Genetics and GenomicsKU LeuvenLeuvenBelgium

Personalised recommendations