Applied Microbiology and Biotechnology

, Volume 99, Issue 21, pp 9203–9213 | Cite as

Engineered Deinococcus radiodurans R1 with NiCoT genes for bioremoval of trace cobalt from spent decontamination solutions of nuclear power reactors

  • Raghu Gogada
  • Surya Satyanarayana Singh
  • Shanti Kumari Lunavat
  • Maruthi Mohan Pamarthi
  • Agnes Rodrigue
  • Balaji Vadivelu
  • Prakash-Babu Phanithi
  • Venkateswaran Gopala
  • Shree Kumar Apte
Environmental biotechnology

Abstract

The aim of the present work was to engineer bacteria for the removal of Co in contaminated effluents. Radioactive cobalt (60Co) is known as a major contributor for person-sievert budgetary because of its long half-life and high γ-energy values. Some bacterial Ni/Co transporter (NiCoT) genes were described to have preferential uptake for cobalt. In this study, the NiCoT genes nxiA and nvoA from Rhodopseudomonas palustris CGA009 (RP) and Novosphingobium aromaticivorans F-199 (NA), respectively, were cloned under the control of the groESL promoter. These genes were expressed in Deinococcus radiodurans in reason of its high resistance to radiation as compared to other bacterial strains. Using qualitative real time-PCR, we showed that the expression of NiCoT-RP and NiCoT-NA is induced by cobalt and nickel. The functional expression of these genes in bioengineered D. radiodurans R1 strains resulted in >60 % removal of 60Co (≥5.1 nM) within 90 min from simulated spent decontamination solution containing 8.5 nM of Co, even in the presence of >10 mM of Fe, Cr, and Ni. D. radiodurans R1 (DR-RP and DR-NA) showed superior survival to recombinant E. coli (ARY023) expressing NiCoT-RP and NA and efficiency in Co remediation up to 6.4 kGy. Thus, the present study reports a remarkable reduction in biomass requirements (2 kg) compared to previous studies using wild-type bacteria (50 kg) or ion-exchanger resins (8000 kg) for treatment of ~105-l spent decontamination solutions (SDS).

Keywords

Bioengineering Bioremediation NiCoT genes Trace cobalt removal Spent decontamination solutions (SDS) Nuclear power reactors 

Notes

Acknowledgments

The authors dedicate this manuscript to late Prof P. Maruthi Mohan. The authors thank Dr. Thomas Eitinger, Humboldt University, Germany, for providing the plasmids (pCH675-RP and pCH675-NA), K. W. Minton and M. J. Daly, Uniformed Services University of the Health Sciences, Bethesda, MD, for providing the D. radiodurans R1 strain, and M. E. Lidstrom, Departments of Chemical Engineering and Microbiology, University of Washington, Seattle, for providing the E. coli-Deinococcus shuttle vector pRAD1. We thank Deepti Appukuttan, who provided technical information related to Deinococcus transformation. We thank Dr. Venkata Prasuja Nakka, Department of Biotechnology and Bioinformatics, University of Hyderabad, Dr. Abdul Qadeer Mohammed, Department of Biochemistry, Osmania University, Hyderabad for their helpful suggestions and critical evaluation of the manuscript. The research work was supported by grants from the Department of Atomic Energy (No: 2004/37/17/BRNS), IFCPAR (3709-1), UGC-SAP (DRS-II), and INSPIRE Faculty Award (DST) IFA12-LSPA-11 to Raghu Gogada.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Akthar N, Sastry KS, Mohan PM (1996) Mechanism of metal biosorption by fungal biomass. Bimetals 9:21–28Google Scholar
  2. Amachi S, Minami K, Miyasaka I, Fukunaga S (2010) Ability of anaerobic microorganisms to associate with iodine: 125I tracer experiments using laboratory strains and enriched microbial communities from subsurface formation water. Chemosphere 79:349–354CrossRefPubMedGoogle Scholar
  3. Appukuttan D, Rao AS, Apte SK (2006) Engineering of Deinococcus radiodurans R1 for Bioprecipitation of Uranium from Dilute Nuclear Waste. Appl Environ Microbiol 72:7873–7878PubMedCentralCrossRefPubMedGoogle Scholar
  4. Ayres JA (1970) Decontamination of Nuclear reactors and equipments, Ronald Press Company NY. Libr Cong Cat Card Number 76:110543Google Scholar
  5. Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224CrossRefPubMedGoogle Scholar
  6. Bradbury D, Smee TL, Williams MR (1986) Recent reactor decontamination experience with LOMI/CANDECON and related processes. In: Proceedings of international conference on water chemistry of nuclear reactor systems (4), British Nuclear Energy Society (BNES) London, 257Google Scholar
  7. Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90CrossRefPubMedGoogle Scholar
  8. Brim H, Venkateshwaran A, Kostandarithes HM, Fredrickson JK, Daly MJ (2003) Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69:4575–4582PubMedCentralCrossRefPubMedGoogle Scholar
  9. Carroll JD, Daly MJ, Minton KW (1996) Expression of recA in Deinococcus radiodurans. J Bacteriol 178:130–135PubMedCentralPubMedGoogle Scholar
  10. Charlesworth DH (1971) Water reactor plant contamination and decontamination requirements - a survey. Proc Am Power Conf 33:749–756Google Scholar
  11. Cohen A (1980) Water coolant technology of power reactors. American Nuclear Society, La Grange ParkGoogle Scholar
  12. Daly MJ, Minton KW (1995) Resistance to radiation. Science 270:1318CrossRefPubMedGoogle Scholar
  13. Daly MJ, Minton KW (1996) An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 178:4461–4471PubMedCentralPubMedGoogle Scholar
  14. Daly MJ (2000) Engineering radiation-resistant bacteria for environmental biotechnology. Curr Opin Biotechnol 11:280–285CrossRefPubMedGoogle Scholar
  15. Deng X, Jinmei H, Ning H (2013) Comparative study on Ni2+-affinity transport of nickel/cobalt permeases (NiCoTs) and the potential of recombinant Escherichia coli for Ni2+ bioaccumulation. Bioresour Technol 130:69–74CrossRefPubMedGoogle Scholar
  16. Duprey A, Viviane C, Franck F, Clémence G, Yoann L, Philippe L, Fanny S, Valérie D, Agnès R, Corinne D (2014) “NiCo Buster”: engineering E. coli for fast and efficient capture of cobalt and nickel. J Biol Eng 8:19PubMedCentralCrossRefPubMedGoogle Scholar
  17. Frišták V, Martin P, Michaela V, Juraj L, Marián R (2014a) Monitoring 60Co activity for the characterization of the sorption process of Co2+ ions in municipal activated sludge. J Radioanal Nucl Chem 299:1607–1614PubMedCentralCrossRefPubMedGoogle Scholar
  18. Frišták V, Michaela V, Martin P, Juraj L (2014b) The Influence of chemical modification on the Co 2+ ion sorption process by anaerobic sludge. Pol J Environ Stud 23:705–712Google Scholar
  19. Gadd GM, White C (1989) Heavy metal and radionuclide accumulation and toxicity in fungi and yeast. In: Poole RK, Gadd GM (eds) Metal-microbe interactions. IRI, Oxford, pp 19–38Google Scholar
  20. Green SJ, Prakash O, Jasrotia P, Overholt WA, Cardenas E, Hubbard D, Tiedje JM, Watson DB, Schadt CW, Brooks SC, Kostka JE (2012) Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site. Appl Environ Microbiol 78:1039–1047PubMedCentralCrossRefPubMedGoogle Scholar
  21. Gunjan P, Paul D, Jain RK (2005) Conceptualizing “suicidal genetically bioengineered microorganisms” for bioremediation applications. Biochem Biophys Res Commun 327:637–639CrossRefGoogle Scholar
  22. Hebbeln P, Eitinger T (2004) Heterologous production and characterization of bacterial nickel/cobalt permeases. FEMS Microbiol Lett 230:129–135CrossRefPubMedGoogle Scholar
  23. Komeda H, Kobayashi M, Shimizu S (1997) A novel transporter involved in cobalt uptake. Proc Natl Acad Sci 94:36–41PubMedCentralCrossRefPubMedGoogle Scholar
  24. Kulkarni S, Anand B, Shree KA (2013) Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. J Hazard Mater 262:853–861CrossRefPubMedGoogle Scholar
  25. Kumar R, Singh S, Singh OV (2007) Bioremediation of radionuclides: emerging technologies. OMICS 11:295–304CrossRefPubMedGoogle Scholar
  26. Prakash D, Prashant G, Anuj K, Chandel ZR, Om VS (2013) Bioremediation: a genuine technology to remediate radionuclides from the environment. Microb Biotechnol 6:349–360PubMedCentralCrossRefPubMedGoogle Scholar
  27. Kurnaz A, Kucukomeroglu B, Keser R, Okumusoglu NT, Korkmaz F, Karahan G, Cevik U (2007) Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, Turkey). Appl Radiat Isot 65:1281–1289CrossRefPubMedGoogle Scholar
  28. Lange CC, Wackett LP, Minton KW, Daly MJ (1998) Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol 16:929–933CrossRefPubMedGoogle Scholar
  29. Lejon J, Hermansson A, Bertholdt HO (1994) A full system decontamination of Oskarshamn 1 BWR. Proc Int Conf Water Chem Nucl Reactor Syst 1:203–210Google Scholar
  30. Lin J, Qi R, Aston C, Jing J, Anantharaman TS, Mishra B, White O, Daly MJ, Minton KW, Venter JC, Schwartz DC (1999) Whole-genome shotgun optical mapping of Deinococcus radiodurans. Science 285:1558–1562CrossRefPubMedGoogle Scholar
  31. Liu X, Duu-Jong L (2014) Biosorption studies on bioremediation and biorecovery. J Taiwan Inst Chem Eng 45(2):1863–1864CrossRefGoogle Scholar
  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔ CT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  33. Lloyd JR, Renshaw JC (2005) Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies. Curr Opin Biotechnol 16:254–60CrossRefPubMedGoogle Scholar
  34. Meima R, Lidstrom ME (2000) Characterization of the minimal replicon of a cryptic Deinococcus radiodurans SARK plasmid and development of versatile Escherichia coli-D. radiodurans shuttle vectors. Appl Environ Microbiol 66:3856–3867PubMedCentralCrossRefPubMedGoogle Scholar
  35. Misra CS, Rita M, Shree KA (2014) Harnessing a radiation inducible promoter of Deinococcus radiodurans for enhanced precipitation of uranium. J Biotechnol 189:88–93CrossRefPubMedGoogle Scholar
  36. Maruthi Mohan P, Kiranmayi P, Haritha A, Premsagar K, Tiwari A, Raghu G (2007) Bioremediation of toxic metal ions: a focused view of metal transportomes. In: Chopra VL, Sharma RP, Bhat SR, Prasanna BM (eds) Search for new genes, 1st edn 14. Academic Foundation in association with the National Academy of Agricultural Science (NAAS), New Delhi, pp 231-243Google Scholar
  37. Naveena Lavanya Latha J, Rashmi K, Maruthi Mohan P (2005) Cell wall bound metal ions are taken up in Neurospora crassa. Can J Microbiol 51:1021–1026CrossRefPubMedGoogle Scholar
  38. Raghu G, Balaji V, Venkateswaran G, Rodrigue A, Maruthi Mohan P (2008) Bioremediation of trace cobalt from simulated spent decontamination solutions of nuclear power reactors using E. coli expressing NiCoT genes. Appl Microbiol Biotechnol 81:571–578CrossRefPubMedGoogle Scholar
  39. Rama Rao K, Sajani LS, Maruthi Mohan P (1996) Bioaccumulation and biosorption of cobalt ions by Neurospora crassa. Biotechnol Lett 18:1205–1208CrossRefGoogle Scholar
  40. Rashmi K, Naga Sowjanya T, Maruthi Mohan P, Balaji V, Venkateswaran G (2004) Bioremediation of 60Co from simulated spent decontamination solutions. Sci Total Environ 328:1–14CrossRefPubMedGoogle Scholar
  41. Rashmi K, Haritha A, Balaji V, Tripathi VS, Venkateswaran G, Maruthi Mohan P (2007) Bioremediation of 60-Co from simulated spent decontamination solutions of nuclear power reactors by bacteria. Curr Sci 92(10):1407–1409Google Scholar
  42. Rodrigue A, Effantin G, Mandrand BM (2005) Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 187(8):2912–2916PubMedCentralCrossRefPubMedGoogle Scholar
  43. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132(3):365–386PubMedGoogle Scholar
  44. Satinder KB, Verma M, Surampalli RY, Misra K, Tyagi RD, Meunier N, Blais JF (2006) Bioremediation of hazardous wastes -a review. Pract Periodical Hazard Toxic Radioactive Waste Manage 10 (2): 59-72 doi: 10.1061/(ASCE)1090-025X 10:2(59)
  45. Shih TY, Shen-Long T (2014) Simultaneous silver recovery and bactericidal bionanocomposite formation via engineered biomolecules. R Soc Chem Adv 4:40994–40998Google Scholar
  46. Taylor NK (1976) Review of available data on the release, transport and deposition of corrosion products in PWR, BWR and SGHWR Systems. United Kingdom Atomic Energy Authority Report, AERE-R8164Google Scholar
  47. Tišáková L, Pipíška M, Godány A, Horník M, Vidová B, Augustín J (2013) Bioaccumulation of 137Cs and 60Co by bacteria isolated from spent nuclear fuel pools. J Radioanal Nucl Chem 295:737–748CrossRefGoogle Scholar
  48. Urch SD (2013) Radiochemistry. Annual Reports Section “A”(Inorg Chem) 109: 468-483Google Scholar
  49. Venkateswaran G, Dey GR, Kerkar AS, Gokhale BK, Gokhale AS, Balaji V, Kumbhar AG, Nema MK, Anantharaman K, Kumar J, Ananthan P, Kumar S, Sathe SM, Sah DN, Sanyal DN, Nath R, Sahu RK, Ramu A, Kansara HN, Muraisharan K, Save CB, Patil DP, Padmanabhan SA, Shinde RP, Pisharody NN, Upadyaya TC, Sharma BL, Katiyar SC, Wagh PM (2003) Chemical decontamination of cleanup system of unit-2 Tarapur Atomic Power Station Phase 2 Task. BARC Report No. BARC/ 2003/ 012Google Scholar
  50. Won SW, Pratap K, Wei W, Areum L, Yeoung-Sang Y (2014) Biosorbents for recovery of precious metals. Bioresour Technol 160:203–212CrossRefPubMedGoogle Scholar
  51. Ybarra GR, Webb R (1999) Effects of divalent metal cations, resistance mechanisms of the cyanobacterium Synechococcus sp. strain 7942. J Hazard Subst Res 2:1–9Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Raghu Gogada
    • 1
    • 2
  • Surya Satyanarayana Singh
    • 2
  • Shanti Kumari Lunavat
    • 2
  • Maruthi Mohan Pamarthi
    • 2
  • Agnes Rodrigue
    • 6
  • Balaji Vadivelu
    • 4
  • Prakash-Babu Phanithi
    • 1
  • Venkateswaran Gopala
    • 5
  • Shree Kumar Apte
    • 3
  1. 1.Department of Biotechnology and Bioinformatics, School of Life SciencesUniversity of HyderabadHyderabadIndia
  2. 2.Department of BiochemistryOsmania UniversityHyderabadIndia
  3. 3.Molecular Biology DivisionBhabha Atomic Research CenterMumbaiIndia
  4. 4.Water Steam Chemistry DivisionBhabha Atomic Research CenterMumbaiIndia
  5. 5.Analytical Chemistry DivisionBhabha Atomic Research CenterMumbaiIndia
  6. 6.Université Lyon 1, INSA de Lyon, CNRS, UMR5240, Microbiologie, Adaptation et PathogénieUniversité de LyonVilleurbanneFrance

Personalised recommendations