Applied Microbiology and Biotechnology

, Volume 99, Issue 17, pp 7369–7377 | Cite as

Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates

  • Zhen Wei
  • Guangming ZengEmail author
  • Fang Huang
  • Matyas Kosa
  • Qining Sun
  • Xianzhi Meng
  • Danlian Huang
  • Arthur J. RagauskasEmail author
Bioenergy and biofuels


Metabolic synthesis of single cell oils (SCOs) for biodiesel application by heterotrophic oleaginous microorganisms is being hampered by the high cost of culture media. This study investigated the possibility of using loblolly pine and sweetgum autohydrolysates as economic feedstocks for microbial lipid production by oleaginous Rhodococcus opacus (R. opacus) PD630 and DSM 1069. Results revealed that when the substrates were detoxified by the removal of inhibitors (such as HMF—hydroxymethyl-furfural), the two strains exhibited viable growth patterns after a short adaptation/lag phase. R. opacus PD630 accumulated as much as 28.6 % of its cell dry weight (CDW) in lipids while growing on detoxified sweetgum autohydrolysate (DSAH) that translates to 0.25 g/l lipid yield. The accumulation of SCOs reached the level of oleagenicity in DSM 1069 cells (28.3 % of CDW) as well, while being cultured on detoxified pine autohydrolysate (DPAH), with the maximum lipid yield of 0.31 g/l. The composition of the obtained microbial oils varied depending on the substrates provided. These results indicate that lignocellulosic autohydrolysates can be used as low-cost fermentation substrates for microbial lipid production by wild-type R. opacus species. Consequently, the variety of applications for aqueous liquors from lignocellulosic pretreatment has been expanded, allowing for the further optimization of the integrated biorefinery.


Autohydrolysis Hardwood Softwood Fatty acid methyl ester Oleaginous Rhodococcus Fermentation 



Z. Wei is grateful to the China Scholarship Council for awarding a scholarship under the State Scholarship Fund to pursue her study. This work will be used by Z. Wei for partial fulfillment of the degree requirement for her doctoral research at the College of Environmental Science and Engineering, Hunan University, Changsha, China. We also wish to acknowledge DOE (EE0006112) for their support via Synthetic Design of Microorganisms for Lignin Fuel, and Synthetic Design of Microorganisms for Lignin Fuel, the National Natural Science Foundation of China (51039001, 51378190) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13R17).

Conflict of interest

The authors declare that they have no competing interests.


  1. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156(4):286–301CrossRefGoogle Scholar
  2. Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund M (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82(4):340–349CrossRefGoogle Scholar
  3. Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Liden G (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82(4):625–638CrossRefPubMedGoogle Scholar
  4. Alvarez HM, Kalscheuer R, Steinbüchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54(2):218–223CrossRefPubMedGoogle Scholar
  5. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861CrossRefPubMedGoogle Scholar
  6. Ayeni AO, Hymore FK, Mudliar SN, Deshmukh SC, Satpute DB, Omoleye JA, Pandey RA (2013) Hydrogen peroxide and lime based oxidative pretreatment of wood waste to enhance enzymatic hydrolysis for a biorefinery: process parameters optimization using response surface methodology. Fuel 106:187–194CrossRefGoogle Scholar
  7. Chartrain M, Jackey B, Taylor C, Sandford V, Gbewonyo K, Lister L, Dimichele L, Hirsch C, Heimbuch B, Maxwell C, Pascoe D, Buckland B, Greasham R (1998) Bioconversion of indene to cis (1S,2R) indandiol and trans (1R,2R) indandiol by Rhodococcus species. J Ferment Bioeng 86(6):550–558CrossRefGoogle Scholar
  8. Chen X, Li Z, Zhang X, Hu F, Ryu DDY, Bao J (2009) Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl Biochem Biotechnol 159(3):591–604CrossRefPubMedGoogle Scholar
  9. Chi ZY, Rover M, Jun E, Deaton M, Johnston P, Brown RC, Wen ZY, Jarboe LR (2013) Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour Technol 150:220–227CrossRefPubMedGoogle Scholar
  10. Choi SY, Ryu DDY, Rhee JS (1982) Production of microbial lipid: effects of growth rate and oxygen on lipid synthesis and fatty acid composition of Rhodotorula gracilis. Biotechnol Bioenerg 24(5):1165–1172CrossRefGoogle Scholar
  11. Davis MW (1998) A rapid modified method for compositional carbohydrate analysis of lignocellulosics by high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC/PAD). Wood Chem Technol 18(2):235–252CrossRefGoogle Scholar
  12. Du W, Xu YY, Zeng J, Liu DH (2004) Novozym 435-catalysed transesterification of crude soya bean oils for biodiesel production in a solvent-free medium. Biotechnol Appl Biochem 40(2):187–190CrossRefPubMedGoogle Scholar
  13. Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulate and Mortierella isabellina. Biomass Bioenerg 33(4):573–580CrossRefGoogle Scholar
  14. Frimmel FH, Assenmacher M, Sörensen M, Abbt-Braun G, Gräbe G (1999) Removal of hydrophilic pollutants from water with organic adsorption polymers: part I. Adsorption behaviour of selected model compounds. Chem Eng Process 38(4–6):601–609CrossRefGoogle Scholar
  15. Gouda MK, Omar SH, Aouad LM (2008) Single cell oil production by Gordonia sp DG using agro-industrial wastes. World J Microbiol Biotechnol 24(9):1703–1711CrossRefGoogle Scholar
  16. Huang C, Zong MH, Wu H, Liu QP (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100(19):4535–4538CrossRefPubMedGoogle Scholar
  17. Huang GH, Chen F, Wei D, Zhang XW, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87(1):38–46CrossRefGoogle Scholar
  18. Jin MJ, Slininger PJ, Dien BS, Waghmode S, Moser BR, Orjuela A, da Costa SL, Balan V (2015) Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol 33(1):43–54CrossRefPubMedGoogle Scholar
  19. Jung S, Foston M, Sullards MC, Ragauskas AJ (2010) Surface characterization of dilute acid pretreated Populus deltoides by ToF-SIMS. Energ Fuel 24:1347–1357CrossRefGoogle Scholar
  20. Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29(2):53–61CrossRefPubMedGoogle Scholar
  21. Kosa M, Ragauskas AJ (2012) Bioconversion of lignin model compounds with oleaginous Rhodococci. Appl Microbiol Biotechnol 93(2):891–900CrossRefPubMedGoogle Scholar
  22. Kurosawa K, Boccazzi P, de Almeida NM, Sinskey AJ (2010) High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J Biotechnol 147(3–4):212–218CrossRefPubMedGoogle Scholar
  23. Kurosawa K, Wewetzer SJ, Sinskey AJ (2013) Engineering xylose metabolism in triacylglycerol producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol Biofuel 6:134CrossRefGoogle Scholar
  24. Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS (2011) Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol Bioeng 108(3):621–631CrossRefPubMedGoogle Scholar
  25. Li Q, Du W, Liu DH (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756CrossRefPubMedGoogle Scholar
  26. Öner C, Altun S (2009) Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine. Appl Energy 86(10):2114–2120CrossRefGoogle Scholar
  27. Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74(1):17–24CrossRefGoogle Scholar
  28. Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33CrossRefGoogle Scholar
  29. Pu Y, Treasure T, Gonzalez RW, Venditti R, Jameel H (2011) Autohydrolysis pretreatment of mixed hardwood to extract value prior to combustion. Bioresources 6(4):4856–4870Google Scholar
  30. Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013a) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuel 6:15CrossRefGoogle Scholar
  31. Pu Y, Treasure T, Gonzalez R, Venditti RA, Jameel H (2013b) Autohydrolysis pretreatment of mixed softwood to produce value prior to combustion. Bioenerg Res 6(3):1094–1110CrossRefGoogle Scholar
  32. Ramadhas AS, Jayaraj S, Muraleedharan C (2005) Biodiesel production from high FFA rubber seed oil. Fuel 84(4):335–340CrossRefGoogle Scholar
  33. Romaní A, Garrote G, López F, Parajó JC (2011) Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Bioresour Technol 102(10):5896–5904CrossRefPubMedGoogle Scholar
  34. Wang B, Rezenom YH, Cho KC, Tran JL, Lee DG, Russell DH, Gill JJ, Young R, Chu KH (2014) Cultivation of lipid-producing bacteria with lignocellulosic biomass: effects of inhibitory compounds of lignocellulosic hydrolysates. Bioresour Technol 161:162–170CrossRefPubMedGoogle Scholar
  35. Wei Z, Zeng GM, Kosa M, Huang DL, Ragauskas AJ (2014) Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus. Appl Biochem Biotechnol 175(2):1234–1246CrossRefPubMedGoogle Scholar
  36. Wells Jr T, Wei Z, Ragauskas AJ (2014) Bioconversion of lignocellulosic pretreatment effluent via oleaginous Rhodococcus opacus DSM 1069. Biomass Bioenerg 72:200–205CrossRefGoogle Scholar
  37. Wyatt VT, Hess MA, Dunn RO, Foglia TA, Haas MJ, Marmer WN (2005) Fuel properties and nitrogen oxide emission levels of biodiesel produced from animal fats. Am Oil Chem Soc 82(8):585–591CrossRefGoogle Scholar
  38. Xiong XC, Wang X, Chen SL (2012) Engineering of a xylose metabolic pathway in Rhodococcus strains. Appl Environ Microbiol 78(16):5483–5491PubMedCentralCrossRefPubMedGoogle Scholar
  39. Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99(16):7881–7885CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zhen Wei
    • 1
    • 2
  • Guangming Zeng
    • 1
    • 2
    Email author
  • Fang Huang
    • 3
  • Matyas Kosa
    • 3
  • Qining Sun
    • 3
  • Xianzhi Meng
    • 3
  • Danlian Huang
    • 1
    • 2
  • Arthur J. Ragauskas
    • 3
    • 4
    Email author
  1. 1.College of Environmental Science and EngineeringHunan UniversityChangshaPeople’s Republic of China
  2. 2.Key Laboratory of Environment Biology and Pollution ControlHunan University, Ministry of EducationChangshaPeople’s Republic of China
  3. 3.School of Chemistry and Biochemistry, and Renewable Bioproducts Institute,Georgia Institute of Technology,AtlantaUSA
  4. 4.Department of Chemical and Biomolecular Engineering, Department of Forestry, Wildlife, and FisheriesThe University of Tennessee-KnoxvilleKnoxvilleUSA

Personalised recommendations