Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 19, pp 7937–7944 | Cite as

A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus

  • Levente KaraffaEmail author
  • Rafael Díaz
  • Benedek Papp
  • Erzsébet Fekete
  • Erzsébet Sándor
  • Christian P. Kubicek
Biotechnological products and process engineering

Abstract

Itaconic acid (IA), an unsaturated dicarboxylic acid with a high potential as a platform for chemicals derived from sugars, is industrially produced by large-scale submerged fermentation by Aspergillus terreus. Although the biochemical pathway and the physiology leading to IA is almost the same as that leading to citric acid production in Aspergillus niger, published data for the volumetric (g L−1) and the specific yield (mol/mol carbon source) of IA are significantly lower than for citric acid. Citric acid is known to accumulate to high levels only when a number of nutritional parameters are carefully adjusted, of which the concentration of the carbon source and that of manganese ions in the medium are particularly important. We have therefore investigated whether a variation in these two parameters may enhance IA production and yield by A. terreus. We show that manganese ion concentrations < 3 ppb are necessary to obtain highest yields. Highest yields were also dependent on the concentration of the carbon source (d-glucose), and highest yields (0.9) were only obtained at concentrations of 12–20 % (w/v), thus allowing the accumulation of up to 130 g L−1 IA. These findings perfectly mirror those obtained when these parameters are varied in citric acid production by A. niger, thus showing that the physiology of both processes is widely identical. Consequently, applying the fermentation technology established for citric acid production by A. niger citric acid production to A. terreus should lead to high yields of IA, too.

Keywords

Aspergillus terreus Itaconic acid Fermentation Manganese ions d-Glucose Specific yield Volumetric yield 

Notes

Acknowledgments

This research was supported by the EU and co-financed by the European Social Fund under the project ENVIKUT (TÁMOP-4.2.2.A-11/1/KONV-2012-0043), by the Hungarian Scientific Research Fund (OTKA Grant K1006600) and by the QuantFung Project (FP7, Proposal Nr. 607332). LK is a recipient of a Bólyai János Research Scholarship. We thank Dávid Andrási for the ICP-MS measurements.

Ethical statement

The authors declare no conflict of interest.

Supplementary material

253_2015_6735_MOESM1_ESM.pdf (26 kb)
ESM 1 (PDF 25 kb)

References

  1. Apelblat A, Manzurola E (1997) Solubilities of L-aspartic, DL-aspartic, DL-glutamic, p-hydroxybenzoic, o-anistic, p-anisic, and itaconic acids in water from T = 278K to T = 345K. J Chem Thermodyn 29:1527–1533CrossRefGoogle Scholar
  2. Batti M, Schweiger LB (1963) Process for the production of itaconic acid. US patent 3,078,217. Miles Laboratories, Inc, ElkhartGoogle Scholar
  3. Baup S (1837) Über eine neue pyrogen- citronensäure, und über benennung der pyrogen säure überhaupt. Ann Chim Phys 19:29–38Google Scholar
  4. Blumhoff ML, Steiger MG, Mattanovich D, Sauer M (2013) Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger. Metab Eng 19:26–32CrossRefPubMedGoogle Scholar
  5. Clark DS, Ito K, Horitsu H (1966) Effect of manganese and other heavy metals on submerged citric acid fermentation of molasses. Biotechnol Bioeng 8:465–471CrossRefGoogle Scholar
  6. Dahod SK (1999) Raw materials selection and medium development for industrial fermentation process. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology, 2nd edn. ASM, Washington DC, pp 213–220Google Scholar
  7. Dai Z, Mao X, Magnuson JK, Lasure LL (2004) Identification of genes associated with morphology in Aspergillus niger by using suppression subtractive hybridization. Appl Environ Microbiol 70:2474–2485PubMedCentralCrossRefPubMedGoogle Scholar
  8. Detroy RW, Ciegler A (1971) Induction of yeastlike development in Aspergillus parasiticus. J Gen Microbiol 65:259–64CrossRefPubMedGoogle Scholar
  9. Feir HA, Suzuki I (1969) Pyruvate carboxylase of Aspergillus niger. Kinetic study of a biotin-containing enzyme. Can J Biochem 47:697–710CrossRefPubMedGoogle Scholar
  10. Gyamerah M (1995) Factors affecting the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation. Appl Microbiol Biotechnol 44:356–361CrossRefGoogle Scholar
  11. Habison A, Kubicek CP, Röhr M (1983) Partial purification and regulatory properties of phosphofructokinase from Aspergillus niger. Biochem J 209:669–676PubMedCentralCrossRefPubMedGoogle Scholar
  12. Hevekerl A, Kuenz A, Vorlop KD (2014) Filamentous fungi in microtiter plates—an easy way to optimize itaconic acid production with Aspergillus terreus. Appl Microbiol Biotechnol 98:6983–6989CrossRefPubMedGoogle Scholar
  13. Hockertz S, Plonzig J, Auling G (1987) Impairment of DNA formation is an early event in Aspergillus niger under manganese starvation. Appl Microbiol Biotechnol 25:590–593CrossRefGoogle Scholar
  14. Jaklitsch WM, Kubicek CP, Scrutton MC (1991) The subcellular organization of itaconate biosynthesis in Aspergillus terreus. Microbiology 137:533–539Google Scholar
  15. Karaffa L, Kubicek CP (2003) Aspergillus niger citric acid accumulation: do we understand this well-working black box? Appl Microbiol Biotechnol 61:189–96CrossRefPubMedGoogle Scholar
  16. Kisser M, Kubicek CP, Röhr M (1980) Influence of manganese on morphology and cell wall composition of Aspergillus niger during citric acid fermentation. Arch Microbiol 128:26–33CrossRefPubMedGoogle Scholar
  17. Kubicek CP (1988) The role of the citric acid cycle in fungal organic acid fermentations. Biochem Soc Symp 54:113–126Google Scholar
  18. Kubicek CP, Zehentgruber O, El-Kalak H, Röhr M (1980) Regulation of citric acid production in Aspergillus niger by oxygen: the effect of dissolved oxygen tension on adenylate levels and respiration. Eur J Appl Microbiol Biotechnol 9:101–115CrossRefGoogle Scholar
  19. Kubicek CP, Punt PJ, Visser J (2010) Organic acid production by filamentous fungi. In: Hofrichter M (ed) The Mycota. Vol. 10. Industrial applications, 2nd edn. Springer, Berlin, pp 215–234Google Scholar
  20. Kuenz A, Gallenmüller Y, Willke T, Vorlop KD (2012) Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol 96:1209–16CrossRefPubMedGoogle Scholar
  21. Li A, Caspers M, Punt P (2013) A systems biology approach for the identification of target genes for the improvement of itaconic acid production in Aspergillus species. BMC Res Notes 6:505PubMedCentralCrossRefPubMedGoogle Scholar
  22. Matzapetakis M, Karligiano N, Bino A, Dakanali M, Raptopoulou CP, Tangoulis V, Terzis A, Giapintzakis J, Salifoglou A (2000) Manganese citrate chemistry: syntheses, spectroscopic studies, and structural characterizations of novel mononuclear, water-soluble manganese citrate complexes. Inorg Chem 39:4044–4051CrossRefPubMedGoogle Scholar
  23. Michel FC Jr, Grulke EA, Reddy CA (1992) Determination of the respiration kinetics for mycelial pellets of Phanerochaete chrysosporium. Appl Environ Microbiol 58:1740–1745PubMedCentralPubMedGoogle Scholar
  24. Moyer AJ (1953) Effect of alcohols on the mycological production of citric acid in surface and submerged culture. I. Nature of the alcohol effect. Appl Microbiol 1:1–6PubMedCentralPubMedGoogle Scholar
  25. Netik A, Torres NV, Riol J-M, Kubicek CP (1997) Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim Biophys Acta 1326:287–294CrossRefPubMedGoogle Scholar
  26. Nubel RC, Ratajak EJ (1962) Process for producing itaconic acid. US patent 3,044,941 (to Pfizer)Google Scholar
  27. Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84:597–606CrossRefPubMedGoogle Scholar
  28. Park YS, Ohta N, Okabe M (1993) Effect of dissolved oxygen concentration and impeller tip speed on itaconic acid production by Aspergillus terreus. Biotechnol Lett 15:583–586CrossRefGoogle Scholar
  29. Peksel A, Torres NV, Liu J, Juneau G, Kubicek CP (2002) 13C-NMR analysis of glucose metabolism during citric acid production by Aspergillus niger. Appl Microbiol Biotechnol 58:157–163CrossRefPubMedGoogle Scholar
  30. Röhr M, Kubicek CP, Kominek J (1996) Citric acid. In: Rehm HJ, Reed G (eds) Biotechnology, vol 6: products of primary metabolism. Verlag Chemie, Weinheim, pp 308–345Google Scholar
  31. Sakai A, Kusumoto A, Kiso Y, Furuya E (2004) Itaconate reduces visceral fat by inhibiting fructose 2,6-bisphosphate synthesis in rat liver. Nutrition 20:997–1002CrossRefPubMedGoogle Scholar
  32. Schreferl G, Kubicek CP, Röhr M (1986) Inhibition of citric acid accumulation by manganese ions in Aspergillus niger mutants with reduced citrate control of phosphofructokinase. J Bacteriol 165:1019–1022PubMedCentralPubMedGoogle Scholar
  33. Schweiger LB (1961) Production of citric acid by fermentation. US patent 2,970,084. Miles Laboratories, Inc, ElkhartGoogle Scholar
  34. Shu P, Johnson MJ (1948) The interdependence of medium constituents in citric acid production by submerged fermentation. J Bacteriol 56:577–85PubMedCentralPubMedGoogle Scholar
  35. Steiger MG, Blumhoff ML, Mattanovich D, Sauer M (2013) Biochemistry of microbial itaconic acid production. Front Microbiol 4: Art. No. 23Google Scholar
  36. Tevz G, Bencina M, Legisa M (2010) Enhancing itaconic acid production by Aspergillus terreus. Appl Microbiol Biotechnol 87:1657–1664CrossRefPubMedGoogle Scholar
  37. van der Straat L, Vernooij M, Lammers M, van den Berg W, Schonewille T, Cordewener J, van der Meer I, Koops A, de Graaff LH (2014) Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microb Cell Fact 13: Art. No. 11.Google Scholar
  38. von Fries H (1966) Verfahren zur fermentativen Herstellung von Itaconsäure durch submers-aerobe Schimmelpilzgärung. DE Patent 1(219):430Google Scholar
  39. Xu D-B, Madrid CP, Röhr M, Kubicek CP (1989) Influence of type and concentration of the carbon source on citric acid production by Aspergillus niger. Appl Microbiol Biotechnol 30:553–558Google Scholar
  40. Zonneveld BJ (1975) Sexual differentiation in Aspergillus nidulans: the requirement for manganese and its effect on alpha-1,3 glucan synthesis and degradation. Arch Microbiol 105:101–104CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Levente Karaffa
    • 1
    Email author
  • Rafael Díaz
    • 1
  • Benedek Papp
    • 2
  • Erzsébet Fekete
    • 1
  • Erzsébet Sándor
    • 2
  • Christian P. Kubicek
    • 3
  1. 1.Department of Biochemical Engineering, Faculty of Science and TechnologyUniversity of DebrecenDebrecenHungary
  2. 2.Faculty of Agricultural and Food Science and Environmental ManagementInstitute of Food ScienceDebrecenHungary
  3. 3.Research Division Biotechnology and Microbiology, Microbiology Group, Institute of Chemical EngineeringVienna University of TechnologyViennaAustria

Personalised recommendations