Applied Microbiology and Biotechnology

, Volume 99, Issue 21, pp 8955–8962 | Cite as

A selection assay for haloalkane dehalogenase activity based on toxic substrates

  • Michael P. C. Fibinger
  • Timo Davids
  • Dominique Böttcher
  • Uwe T. Bornscheuer
Biotechnologically relevant enzymes and proteins


Based on natural selection and the survival of the fittest by evolutionary adaption, a smart high-throughput system was developed to select active haloalkane dehalogenase variants from a large mutant library. Only active enzyme variants can hydrolyse toxic halogenated alkanes to promote growth, whereas inactive mutants starve or die due to the toxic compound. With this powerful tool, huge enzyme mutant libraries can be screened within a few days. The selection is done without any artificial substrates that are hard to synthesize and they also resemble typical ones for haloalkane dehalogenases. Three saturation libraries, with a size of more than 106 cells, based on inactive variants of the haloalkane dehalogenases DhaA or DhlA were successfully screened to retrieve active enzymes. The enrichment of the active wild-type enzyme in contrast to the inactive variants was about 340-fold. In addition, this selection approach can be applied for continuous directed evolution experiments for the enrichment of cells expressing adapted haloalkane dehalogenases.


Toxicity Continuous selection process Haloalkane dehalogenase Growth assay 


  1. Acevedo-Rocha CG, Agudo R, Reetz MT (2014) Directed evolution of stereoselective enzymes based on genetic selection as opposed to screening systems. J Biotechnol 191:3–10CrossRefPubMedGoogle Scholar
  2. Altenbuchner J (1988) A new E.coli cloning vector containing a melanin marker for insertion screening. Nucleic Acids Res 16(17):8710PubMedCentralCrossRefPubMedGoogle Scholar
  3. Archer IVJ (1997) Epoxide hydrolases as asymmetric catalysts. Tetrahedron 53(46):15617–15662CrossRefGoogle Scholar
  4. Arnold FH (1998) Design by directed evolution. Acc Chem Res 31(3):125–131CrossRefGoogle Scholar
  5. Arnold FH, Volkov AA (1999) Directed evolution of biocatalysts. Curr Opin Chem Biol 3(1):54–59CrossRefPubMedGoogle Scholar
  6. Bahl CD, Morisseau C, Bomberger JM, Stanton BA, Hammock BD, O’Toole GA, Madden DR (2010) Crystal structure of the cystic fibrosis transmembrane conductance regulator inhibitory factor Cif reveals novel active-site features of an epoxide hydrolase virulence factor. J Bacteriol 192(7):1785–1795PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bornscheuer UT (2013) Protein engineering as a tool for the development of novel bioproduction systems. Adv Biochem Eng Biotechnol 137:25–40PubMedGoogle Scholar
  8. Bornscheuer UT, Pohl M (2001) Improved biocatalysts by directed evolution and rational protein design. Curr Opin Chem Biol 5(2):137–143CrossRefPubMedGoogle Scholar
  9. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194CrossRefPubMedGoogle Scholar
  10. Bosma T, Damborsky J, Stucki G, Janssen DB (2002) Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene. Appl Environ Microbiol 68(7):3582–3587PubMedCentralCrossRefPubMedGoogle Scholar
  11. Böttcher D, Schmidt M, Bornscheuer UT (2008) Alteration of substrate specificity and stereoselectivity of lipases and esterases protein engineering handbook. Wiley-VCH Verlag GmbH & Co. KGaA, pp 753–775Google Scholar
  12. Chaloupkova R, Sykorova J, Prokop Z, Jesenska A, Monincovaa M, Pavlova M, Tsuda M, Nagata Y, Damborsky J (2003) Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel. J Biol Chem 278(52):52622–52628CrossRefPubMedGoogle Scholar
  13. Chen K, Arnold FH (1993) Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci 90(12):5618–5622PubMedCentralCrossRefPubMedGoogle Scholar
  14. Chovancova E, Kosinski J, Bujnicki JM, Damborsky J (2007) Phylogenetic analysis of haloalkane dehalogenases. Proteins 67(2):305–316CrossRefPubMedGoogle Scholar
  15. Christians FC, Loeb LA (1996) Novel human DNA alkyltransferases obtained by random substitution and genetic selection in bacteria. Proc Natl Acad Sci 93(12):6124–6128PubMedCentralCrossRefPubMedGoogle Scholar
  16. Dvorak P, Bidmanova S, Damborsky J, Prokop Z (2014) Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1,2,3-trichloropropane. Environ Sci Technol 48(12):6859–6866CrossRefPubMedGoogle Scholar
  17. Fernández-Álvaro E, Snajdrova R, Jochens H, Davids T, Böttcher D, Bornscheuer UT (2011) A combination of in vivo selection and cell sorting for the identification of enantioselective biocatalysts. Angew Chem 50:8584–8587CrossRefGoogle Scholar
  18. Fetzner S, Lingens F (1994) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev 58(4):641–685PubMedCentralPubMedGoogle Scholar
  19. Gribble GW (2010) Naturally occurring organohalogen compounds: a comprehensive update. Springer, WienCrossRefGoogle Scholar
  20. Holloway P, Trevors JT, Lee H (1997) A colorimetric assay for detecting haloalkane dehalogenase activity. J Microbiol Methods 32(1):31–36CrossRefGoogle Scholar
  21. Janssen DB (2004) Evolving haloalkane dehalogenases. Curr Opin Chem Biol 8(2):150–159CrossRefPubMedGoogle Scholar
  22. Janssen DB, Pries F, Vanderploeg J, Kazemier B, Terpstra P, Witholt B (1989) Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophicus GJ10 and expression and sequencing of the dhla gene. J Bacteriol 171(12):6791–6799PubMedCentralPubMedGoogle Scholar
  23. Janssen DB, Oppentocht JE, Poelarends GJ (2001) Microbial dehalogenation. Curr Opin Biotechnol 12(3):254–258CrossRefPubMedGoogle Scholar
  24. Jesenska A, Pavlova M, Strouhal M, Chaloupkova R, Tesinska I, Monincova M, Prokop Z, Bartos M, Pavlik I, Rychlik I, Mobius P, Nagata Y, Damborsky J (2005) Cloning, biochemical properties, and distribution of mycobacterial haloalkane dehalogenases. Appl Environ Microbiol 71(11):6736–6745PubMedCentralCrossRefPubMedGoogle Scholar
  25. Jochens H, Hesseler M, Stiba K, Padhi SK, Kazlauskas RJ, Bornscheuer UT (2011) Protein engineering of alpha/beta-hydrolase fold enzymes. ChemBioChem 12(10):1508–1517CrossRefPubMedGoogle Scholar
  26. Kawasaki H, Kuriyama H, Tonomura K (1995) Use of haloacetate dehalogenase genes as selection markers for Escherichia coli and Pseudomonas vectors. Biodegradation 6(3):213–216CrossRefPubMedGoogle Scholar
  27. Kazlauskas R (2009) Engineering enantioselectivity in enzyme-catalyzed reactions. In: Lutz S, Bornscheuer UT (eds) Protein engineering handbook. Wiley-VCH, Weinheim, pp 15–47Google Scholar
  28. Keuning S, Janssen DB, Witholt B (1985) Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. J Bacteriol 163(2):635–639PubMedCentralPubMedGoogle Scholar
  29. Koudelakova T, Chovancova E, Brezovsky J, Monincova M, Fortova A, Jarkovsky J, Damborsky J (2011) Substrate specificity of haloalkane dehalogenases. Biochem J 435(2):345–354CrossRefPubMedGoogle Scholar
  30. Koudelakova T, Bidmanova S, Dvorak P, Pavelka A, Chaloupkova R, Prokop Z, Damborsky J (2013) Haloalkane dehalogenases: biotechnological applications. Biotechnol J 8(1):32–45CrossRefPubMedGoogle Scholar
  31. Kulakova AN, Larkin MJ, Kulakov LA (1997) The plasmid-located haloalkane dehalogenase gene from Rhodococcus rhodochrous NCIMB 13064. Microbiology 143(Pt 1):109–115CrossRefPubMedGoogle Scholar
  32. MacBeath G, Kast P, Hilvert D (1998) Redesigning enzyme topology by directed evolution. Science 279(5358):1958–1961CrossRefPubMedGoogle Scholar
  33. Miyazaki K (2003) Creating random mutagenesis libraries by megaprimer PCR of whole plasmid (MEGAWHOP). Methods Mol Biol 231:23–28PubMedGoogle Scholar
  34. Nardini M, Ridder IS, Rozeboom HJ, Kalk KH, Rink R, Janssen DB, Dijkstra BW (1999) The X-ray structure of epoxide hydrolase from Agrobacterium radiobacter AD1 - An enzyme to detoxify harmful epoxides. J Biol Chem 274(21):14579–14586CrossRefPubMedGoogle Scholar
  35. Newman J, Peat TS, Richard R, Kan L, Swanson PE, Affholter JA, Holmes IH, Schindler JF, Unkefer CJ, Terwilliger TC (1999) Haloalkane dehalogenases: structure of a Rhodococcus enzyme. Biochemistry 38(49):16105–16114CrossRefPubMedGoogle Scholar
  36. Pavlova M, Klvana M, Prokop Z, Chaloupkova R, Banas P, Otyepka M, Wade RC, Tsuda M, Nagata Y, Damborsky J (2009) Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol 5(10):727–733CrossRefPubMedGoogle Scholar
  37. Prokop Z, Sato Y, Brezovsky J, Mozga T, Chaloupkova R, Koudelakova T, Jerabek P, Stepankova V, Natsume R, van Leeuwen JG, Janssen DB, Florian J, Nagata Y, Senda T, Damborsky J (2010) Enantioselectivity of haloalkane dehalogenases and its modulation by surface loop engineering. Angew Chem Int Ed Engl 49(35):6111–6115CrossRefPubMedGoogle Scholar
  38. Reetz MT, Hobenreich H, Soni P, Fernandez L (2008) A genetic selection system for evolving enantioselectivity of enzymes. Chem Commun 43:5502–5504CrossRefGoogle Scholar
  39. Roth JR, Kugelberg E, Reams AB, Kofoid E, Andersson DI (2006) Origin of mutations under selection: the adaptive mutation controversy. Annu Rev Microbiol 60:477–501CrossRefPubMedGoogle Scholar
  40. Schmidt-Dannert C, Arnold FH (1999) Directed evolution of industrial enzymes. Trends Biotechnol 17(4):135–136CrossRefPubMedGoogle Scholar
  41. Steele DF, Jinks-Robertson S (1992) An examination of adaptive reversion in Saccharomyces cerevisiae. Genetics 132(1):9–21PubMedCentralPubMedGoogle Scholar
  42. Stepankova V, Bidmanova S, Koudelakova T, Prokop Z, Chaloupkova R, Damborsky J (2013) Strategies for stabilization of enzymes in organic solvents. ACS Catal 3(12):2823–2836CrossRefGoogle Scholar
  43. Swaving J, de Bont JAM (1998) Microbial transformation of epoxides. Enzym Microb Technol 22(1):19–26CrossRefGoogle Scholar
  44. Tang LX, van Merode AEJ, Spelberg JHL, Fraaije MW, Janssen DB (2003) Steady-state kinetics and tryptophan fluorescence properties of halohydrin dehalogenase from Agrobacterium radiobacter. Roles of W139 and W249 in the active site and halide-induced conformational change. Biochemistry 42(47):14057–14065CrossRefPubMedGoogle Scholar
  45. van Leeuwen JG, Wijma HJ, Floor RJ, van der Laan JM, Janssen DB (2012) Directed evolution strategies for enantiocomplementary haloalkane dehalogenases: from chemical waste to enantiopure building blocks. ChemBioChem 13(1):137–148CrossRefPubMedGoogle Scholar
  46. Yano T, Oue S, Kagamiyama H (1998) Directed evolution of an aspartate aminotransferase with new substrate specificities. Proc Natl Acad Sci 95(10):5511–5515PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Michael P. C. Fibinger
    • 1
  • Timo Davids
    • 2
  • Dominique Böttcher
    • 1
  • Uwe T. Bornscheuer
    • 1
  1. 1.Department of Biotechnology and Enzyme Catalysis, Institute of BiochemistryUniversity of GreifswaldGreifswaldGermany
  2. 2.Davids Biotechnologie GmbHRegensburgGermany

Personalised recommendations