Applied Microbiology and Biotechnology

, Volume 99, Issue 13, pp 5583–5592 | Cite as

Effects of impurities in biodiesel-derived glycerol on growth and expression of heavy metal ion homeostasis genes and gene products in Pseudomonas putida LS46

  • Jilagamazhi Fu
  • Parveen Sharma
  • Vic Spicer
  • Oleg V. Krokhin
  • Xiangli Zhang
  • Brian Fristensky
  • John A. Wilkins
  • Nazim Cicek
  • Richard Sparling
  • David. B. Levin
Genomics, transcriptomics, proteomics

Abstract

Biodiesel production-derived waste glycerol (WG) was previously investigated as potential carbon source for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46. In this study, we evaluated the effect of impurities in the WG on P. putida LS46 physiology during exponential growth and corresponding changes in transcription and protein expression profiles compared with cells grown on pure, reagent grade glycerol. High concentration of metal ions, such as Na+, and numbers of heavy metals ion, such as copper, ion, zinc, were detected in biodiesel-derived WG. Omics analysis from the corresponding cultures suggested altered expression of genes involved in transport and metabolism of ammonia and heavy metal ions. Expression of three groups of heavy metal homeostasis genes was significantly changed (mostly upregulated) in WG cultures and included the following: copper-responded cluster 1 and 2 genes, primarily containing cusABC; two copies of copAB and heavy metal translocating P-type ATPase; Fur-regulated, TonB-dependent siderophore receptor; and several cobalt/zinc/cadmium transporters. Expression of these genes suggests regulation of intracellular concentrations of heavy metals during growth on biodiesel-derived glycerol. Finally, a number of genes involved in adapting to, or metabolizing free fatty acids and other nonheavy metal contaminants, such as Na+, were also upregulated in P. putida LS46 grown on biodiesel-derived glycerol.

Keywords

Omics mcl-PHA Heavy metals P. putida LS46 Biodiesel-derived waste glycerol 

Supplementary material

253_2015_6685_MOESM1_ESM.pdf (1 mb)
ESM 1(PDF 1059 kb)

References

  1. Bender C, Cooksey D (1987) Molecular cloning of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol 169:470–474PubMedCentralPubMedGoogle Scholar
  2. Brown NL, Ford SJ, Pridmore RD, Fritzinger DC (1983) Deoxyribonucleic acid sequence of a gene from the Pseudomonas transposon TN501 encoding mercuric reductase. Biochemistry 22:4089–4095. doi:10.1021/bi00286a015 PubMedCrossRefGoogle Scholar
  3. Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163. doi:10.1016/S0168-6445(03)00051-2 PubMedCrossRefGoogle Scholar
  4. Cánovas D, Cases I, De Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5:1242–1256. doi:10.1111/j.1462-2920.2003.00463.x PubMedCrossRefGoogle Scholar
  5. Cha JS, Cooksey DA (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci 88:8915–8919. doi:10.1073/pnas.88.20.8915 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chatzifragkou A, Papanikolaou S (2012) Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes. Appl Microbiol Biotechnol 95:13 27. doi:10.1007/s00253-012-4111-3
  7. Escapa I, Del Cerro C, García J, Prieto M (2013) The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol. Environ Microbiol 15:93–110. doi:10.1111/j.1462-2920.2012.02790.x PubMedCrossRefGoogle Scholar
  8. Fan F, Ghanem M, Gadda G (2004) Cloning, sequence analysis, and purification of choline oxidase from < i > Arthrobacter globiformis</i>: a bacterial enzyme involved in osmotic stress tolerance. Arch Biochem Biophys 421:149–158. doi:10.1016/j.abb.2003.10.003 PubMedCrossRefGoogle Scholar
  9. Fu J, Sharma U, Sparling R, Cicek N, Levin DB (2014) Evaluation of medium-chain length Polyhydroxyalkanoate production by Pseudomonas putida LS46 using biodiesel by-product streams. Can J Microbiol 60:461–468. doi:10.1139/cjm-2014-0108 PubMedCrossRefGoogle Scholar
  10. González-Guerrero M, Raimunda D, Cheng X, Argüello JM (2010) Distinct functional roles of homologous Cu + efflux ATPases in Pseudomonas aeruginosa. Mol Microbiol 78:1246–1258. doi:10.1111/j.1365-2958.2010.07402.x PubMedCrossRefGoogle Scholar
  11. Gungormusler-Yilmaz M, Shamshurin D, Grigoryan M, Taillefer M, Spicer V, Krokhin OV, Sparling R, Levin DB (2014) Reduced catabolic protein expression in Clostridium butyricum DSM 10702 correlate with reduced 1, 3-propanediol synthesis at high glycerol loading. AMB Express 4:63–77. doi:10.1186/s13568-014-0063-6 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Gutiérrez-Barranquero JA, de Vicente A, Carrión VJ, Sundin GW, Cazorla FM (2013) Recruitment and rearrangement of three different genetic determinants into a conjugative plasmid increase copper resistance in Pseudomonas syringae. Appl Environ Microbiol 79:1028–1033. doi:10.1128/AEM.02644-12 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Haney CJ, Grass G, Franke S, Rensing C (2005) New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol 32:215–226. doi:10.1007/s10295-005-0224-3 PubMedCrossRefGoogle Scholar
  14. Hantke K (2001) Bacterial zinc transporters and regulators. In: Mark W (ed) Zinc Biochemistry, Physiology, and Homeostasis. Springer, Berlin, pp 53–63CrossRefGoogle Scholar
  15. Hassett DJ, Sokol PA, Howell ML, Ma JF, Schweizer HT, Ochsner U, Vasil ML (1996) Ferric uptake regulator (Fur) mutants of Pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities. J Bacteriol 178:3996–4003PubMedCentralPubMedGoogle Scholar
  16. Hu RM, Liao ST, Huang CC, Huang YW, Yang TC (2012) An inducible fusaric acid tripartite efflux pump contributes to the fusaric acid resistance in Stenotrophomonas maltophilia. PLoS ONE 7:e51053. doi:10.1371/journal.pone.0051053 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Kenny ST, Runic JN, Kaminsky W, Woods T, Babu RP, O’Connor KE (2012) Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Appl Microbiol Biotechnol 95:623–633. doi:10.1007/s00253-012-4058-4 PubMedCrossRefGoogle Scholar
  18. Kosono S, Haga K, Tomizawa R, Kajiyama Y, Hatano K, Takeda S, Wakai Y, Hino M, Kudo T (2005) Characterization of a multigene-encoded sodium/hydrogen antiporter (Sha) from Pseudomonas aeruginosa: its involvement in pathogenesis. J Bacteriol 187:5242–5248. doi:10.1128/JB.187.15.5242-5248.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Leedjärv A, Ivask A, Virta M (2008) Interplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440. J Bacteriol 190:2680–2689. doi:10.1128/JB.01494-07 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Li XZ, Barré N, Poole K (2000) Influence of the MexA-MexB-OprM multidrug efflux system on expression of the MexC-MexD-OprJ and MexE-MexF-OprN multidrug efflux systems in Pseudomonas aeruginosa. J Antimicrob Chemother 46:885–893. doi:10.1093/jac/46.6.885 PubMedCrossRefGoogle Scholar
  21. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Pillay M, Ratner A, Huang J, Woyke T, Huntemann M (2013) IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 42:D560–D567. doi:10.1093/nar/gkt963 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal‐responsive genes. FEMS Microbiol Rev 27:385–410. doi:10.1016/S0168-6445(03)00045-7 PubMedCrossRefGoogle Scholar
  23. Michéa H, Mehri HU, Gotoh N, Kocjancic Curty L, Pechère JC (1997) Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 23:345–354. doi:10.1046/j.1365-2958.1997.2281594.x CrossRefGoogle Scholar
  24. Miller C, Pettee B, Zhang C, Pabst M, McLean J, Anderson A (2009) Copper and cadmium: responses in Pseudomonas putida KT2440. Lett Appl Microbiol 49:775–783. doi:10.1111/j.1472-765X.2009.02741.x PubMedCrossRefGoogle Scholar
  25. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750PubMedCrossRefGoogle Scholar
  26. Pabst MW, Miller CD, Dimkpa CO, Anderson AJ, McLean JE (2010) Defining the surface adsorption and internalization of copper and cadmium in a soil bacterium Pseudomonas putida. Chemosphere 81:904–910. doi:10.1016/j.chemosphere.2010.07.069 PubMedCrossRefGoogle Scholar
  27. Pan JH, Chen Y, Huang YH, Tao YW, Wang J, Li Y, Peng Y, Dong T, Lai XM, Lin YC (2011) Antimycobacterial activity of fusaric acid from a mangrove endophyte and its metal complexes. Arch Pharm Res 34:1177–1181. doi:10.1007/s12272-011-0716-9 PubMedCrossRefGoogle Scholar
  28. Posada JA, Naranjo JM, López JA, Higuita JC, Cardona CA (2011) Design and analysis of poly-3-hydroxybutyrate production processes from crude glycerol. Process Biochem 46:310–317. doi:10.1016/j.procbio.2010.09.003 CrossRefGoogle Scholar
  29. Pyle DJ, Garcia RA, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933–3939. doi:10.1021/jf800602s PubMedCrossRefGoogle Scholar
  30. Saier MH, Reddy VS, Tamang DG, Västermark Å (2014) The transporter classification database. Nucleic Acids Res 34:D181–D186. doi:10.1093/nar/gkt1097 CrossRefGoogle Scholar
  31. Sharma PK, Fu J, Cicek N, Sparling R, Levin DB (2012) Kinetics of medium-chain-length polyhydroxyalkanoate production by a novel isolate of Pseudomonas putida LS46. Can J Microbiol 58:982–989. doi:10.1139/w2012-074 PubMedCrossRefGoogle Scholar
  32. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36. doi:10.1093/nar/28.1.33 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Teitzel GM, Geddie A, Susan K, Kirisits MJ, Whiteley M, Parsek MR (2006) Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol 188:7242–7256. doi:10.1128/JB.00837-06 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Thompson J, He B (2006) Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl Eng Agric 22:261–267CrossRefGoogle Scholar
  35. Tortajada M, Ferreira da Silva L, Prieto MA (2013) Second-generation functionalized mediumchain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications. Int Microbiol 16:1–15PubMedGoogle Scholar
  36. Utsumi R, Yagi T, Katayama S, Katsuragi K, Tachibana K, Toyoda H, Ouchi S, Obata K, Shibana Y, Noda M (1991) Molecular cloning and characterization of the fusaric acid-resistance gene from Pseudomonas cepacia. Agric Biol Chem 55:1913–1918PubMedCrossRefGoogle Scholar
  37. Verbeke TJ, Spicer V, Krokhin OV, Zhang X, Schellenberg JJ, Fristensky B, Wilkins JA, Levin DB, Sparling R (2013) Thermoanaerobacter thermohydrosulfuricus WC1 shows protein complement stability during the fermentation of key lignocellulose-derived substrates. Appl Environ Microbiol 80:1602–1625. doi:10.1128/AEM.03555-13 PubMedCrossRefGoogle Scholar
  38. Verhoef S, Gao N, Ruijssenaars HJ, de Winde JH (2014) Crude glycerol as feedstock for the sustainable production of p-hydroxybenzoate by Pseudomonas putida S12. New Biotechnol 31:114–119. doi:10.1016/j.nbt.2013.08.006 CrossRefGoogle Scholar
  39. Wargo MJ, Szwergold BS, Hogan DA (2008) Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism. J Bacteriol 190:2690–2699. doi:10.1128/JB.01393-07 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2011) Comparative genomics and functional analysis of niche - specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299–323. doi:10.1111/j.1574-6976.2010.00249.x PubMedCentralPubMedCrossRefGoogle Scholar
  41. Zhang W, Chen L, Liu D (2012) Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbiol Biotechnol 93:1305–1314. doi:10.1007/s00253-011-3454-5 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jilagamazhi Fu
    • 1
  • Parveen Sharma
    • 1
  • Vic Spicer
    • 2
  • Oleg V. Krokhin
    • 2
  • Xiangli Zhang
    • 3
  • Brian Fristensky
    • 3
  • John A. Wilkins
    • 2
  • Nazim Cicek
    • 1
  • Richard Sparling
    • 4
  • David. B. Levin
    • 1
  1. 1.Department of Biosystems EngineeringUniversity of ManitobaWinnipegCanada
  2. 2.Department of Internal Medicine and Manitoba Centre for Proteomics and Systems BiologyUniversity of ManitobaWinnipegCanada
  3. 3.Department of Plant ScienceUniversity of ManitobaWinnipegCanada
  4. 4.Department of MicrobiologyUniversity of ManitobaWinnipegCanada

Personalised recommendations