Applied Microbiology and Biotechnology

, Volume 99, Issue 19, pp 8113–8123 | Cite as

Probiotic attributes of Lactobacillus fermentum isolated from human feces and dairy products

  • Ann Catherine Archer
  • Prakash M. HalamiEmail author
Applied microbial and cell physiology


The objective of this study was to characterize native Lactobacillus fermentum isolates for their probiotic attributes. Accordingly, 12 L. fermentum isolates selected from indigenous fermented dairy products and infant fecal samples were evaluated for their probiotic properties by in vitro and PCR methods. The cultures exhibited high tolerance to acid and bile as well as survival in simulated transit fluids (above 70 %). Cell surface hydrophobicity was in the range of 0.55–57.69 % for xylene and 0.45–77.12 % for hexadecane, whereas auto-aggregation ranged between 9 and 62 %. Isolates exhibited efficient binding to mucin and fibronectin, bile salt hydrolase activity, cholesterol assimilation (49–76 %), and radical scavenging activity (37–77 %). The isolates demonstrated antibacterial activity against Listeria monocytogenes Scott A and Micrococcus luteus ATCC 9341. Molecular fingerprinting and identification of the isolates were achieved by PCR with GTG5 as well as 16S rRNA, phenylalanyl-tRNA synthetase alpha subunit (pheS), and RNA polymerase alpha subunit (rpoA) genes. This revealed the genomic diversity of the isolates from the two sources. Gene-specific amplification of probiotic marker genes was attained by PCR-based methods, and resultant products were sequenced. Multiple sequence alignment of the probiotic marker genes using bioinformatics revealed similarity to completely sequenced genomes of L. fermentum CECT 5716 and IFO 3956 with a few variations in mucin-binding protein gene sequences. Isolates designated as L. fermentum MCC 2759 and L. fermentum MCC 2760 showed the best probiotic attributes with high survival in simulated gastrointestinal fluids, in vitro adhesion, cholesterol reduction, and high antioxidative potential. Thus, these cultures could be potential probiotic candidates for application as functional foods.


Probiotics L. fermentum Molecular fingerprinting Probiotic marker genes 



We thank Prof. Ram Rajasekharan, Director, CSIR-CFTRI, Mysore, for providing the necessary facilities. This study was funded by the Indian Council of Medical Research, Government of India, New Delhi. ACA gratefully acknowledges the University Grants Commission, New Delhi, for a grant of Maulana Azad National Fellowship.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

253_2015_6679_MOESM1_ESM.pdf (199 kb)
Fig. S1 (PDF 198 kb)


  1. Badarinath V, Halami PM (2009) Evaluation of bacteriocinogenic lactic acid bacteria isolated from fermented milk and idli batter for probiotic applications. Int J Prob Preb 4:33–40Google Scholar
  2. Bao Y, Zhang Y, Zhang Y, Liu Y, Wang S, Dong X, Zhang H (2010) Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21:695–701. doi: 10.1016/j.foodcont.2009.10.010 CrossRefGoogle Scholar
  3. Begley M, Gahan CG, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651. doi: 10.1016/j.femsre.2004.09.003 CrossRefPubMedGoogle Scholar
  4. Begley M, Hill C, Gahan CG (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738. doi: 10.1128/AEM.72.3.1729-1738.2006 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53:33–41. doi: 10.1016/S0168-1605(00)00526-2 CrossRefPubMedGoogle Scholar
  6. Chagnaud P, Machinis K, Coutte AL, Marecat A, Mercenier A (2001) Rapid PCR-based procedure to identify lactic acid bacteria: application to six common Lactobacillus species. J Microbiol Methods 44:139–148. doi: 10.1016/S0167-7012(00)00244-X CrossRefPubMedGoogle Scholar
  7. Cotter PD, Hill C (2003) Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453. doi: 10.1128/MMBR.67.3.429-453.2003 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Devi SM, Halami PM (2011) Detection and characterization of pediocin PA-1/AcH like bacteriocin producing lactic acid bacteria. Curr Microbiol 62:181–185. doi: 10.1007/s00284-011-9963-8 CrossRefGoogle Scholar
  9. Dickson EM, Riggio MP, Macpherson L (2005) A novel species-specific PCR assay for identifying Lactobacillus fermentum. J Med Microbiol 54:299–303. doi: 10.1099/jmm.0.45770-0 CrossRefPubMedGoogle Scholar
  10. Draksler D, Gonzáles S, Oliver G (2004) Preliminary assays for the development of a probiotic for goats. Reprod Nutr Dev 44:397–405. doi: 10.1051/rnd:2004046 CrossRefPubMedGoogle Scholar
  11. Du Toit M, Franz CMAP, Dicks LMT, Schillinger U, Haberer P, Warlies B, Holzapfel WH (1998) Characterisation and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. Int J Food Microbiol 40:93–104. doi: 10.1016/S0168-1605(98)00024-5 CrossRefPubMedGoogle Scholar
  12. Ferrero M, Cesena C, Morelli L, Scolari G, Vescovo M (1996) Molecular characterization of Lactobacillus casei strains. FEMS Microbiol Lett 140:215–219. doi: 10.1111/j.1574-6968.1996.tb08339.x CrossRefGoogle Scholar
  13. Gevers D, Huys G, Swings J (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36. doi: 10.1111/j.1574-6968.2001.tb10921.x CrossRefPubMedGoogle Scholar
  14. Guarner F, Malagelada J-R (2003) Gut flora in health and disease. The Lancet 361:512–519. doi: 10.1016/S0140-6736(03)12489-0
  15. Harzallah D, Belhadj H (2013) Lactic acid bacteria as probiotics: characteristics, selection criteria and role in immunomodulation of human GI mucosal barrier. Lactic Acid Bacteria–R & D for Food, Health Livest Purp 197-217Google Scholar
  16. Hemarajata P, Versalovic J (2012) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol. doi: 10.1177/1756283X12459294 Google Scholar
  17. Jiménez E, Langa S, Martín V, Arroyo R, Martín R, Fernández L, Rodríguez JM (2010) Complete genome sequence of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. J Bacteriol 192:4800–4800. doi: 10.1128/JB.00702-10
  18. Joint FAO (2002) WHO working group report on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada, 30Google Scholar
  19. Joosten HMLJ, Northolt MD (1989) Detection, growth, and amine-producing capacity of lactobacilli in cheese. Appl Environ Microbiol 55:2356–2359PubMedCentralPubMedGoogle Scholar
  20. Kaushik JK, Kumar A, Duary RK, Mohanty AK, Grover S, Batish VK (2009) Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PloS One 4:1–11. doi: 10.1371/journal.pone.0008099 CrossRefGoogle Scholar
  21. Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72:728–764. doi: 10.1128/MMBR.00017-08 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, Wang Q (2012) Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem 135:1914–1919. doi: 10.1016/j.foodchem.2012.06.048 CrossRefPubMedGoogle Scholar
  23. Mañé J, Lorén V, Pedrosa E, Ojanguren I, Xaus J, Cabré E, Gassull MA (2009) Lactobacillus fermentum CECT 5716 prevents and reverts intestinal damage on TNBS‐induced colitis in mice. Inflamm Bowel Dis 15:1155–1163. doi: 10.1002/ibd.20908 CrossRefPubMedGoogle Scholar
  24. Mathara JM, Schillinger U, Guigas C, Franz C, Kutima PM, Mbugua SK, Sin HK, Holzapfel WH (2008) Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya. Int J Food Microbiol 126:57–64. doi: 10.1016/j.ijfoodmicro.2008.04.027 CrossRefPubMedGoogle Scholar
  25. Mikelsaar M, Zilmer M (2009) Lactobacillus fermentum ME-3—an antimicrobial and antioxidative probiotic. Microb Ecol Health Dis 21:1–27. doi: 10.1080/08910600902815561 PubMedCentralCrossRefPubMedGoogle Scholar
  26. Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, Hattori M (2008) Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res 15:151–161. doi: 10.1093/dnares/dsn009 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Muñoz-Quezada S, Chenoll E, María Vieites J, Genovés S, Maldonado J, Bermúdez-Brito M, Gil A (2013) Isolation, identification and characterisation of three novel probiotic strains (Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036) from the faeces of exclusively breast-fed infants. Br J Nutr 109:S51–S62. doi: 10.1017/S0007114512005211 CrossRefPubMedGoogle Scholar
  28. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K, Cleenwerck I, Vancanneyt M, Swings J (2007) Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 57:2777–2789. doi: 10.1099/ijs.0.64711-0 CrossRefPubMedGoogle Scholar
  29. Nikolic M, Jovcic B, Kojic M, Topisirovic L (2010) Surface properties of Lactobacillus and Leuconostoc isolates from homemade cheeses showing auto-aggregation ability. Eur Food Res Technol 231:925–931. doi: 10.1007/s00217-010-1344-1 CrossRefGoogle Scholar
  30. Nithya V, Halami PM (2012) Antibacterial peptides, probiotic properties and biopreservative efficacy of native Bacillus species isolated from different food sources. Probiotics Antimicrob Proteins 4:279–290. doi: 10.1007/s12602-012-9115-x CrossRefGoogle Scholar
  31. Olivares M, Díaz-Ropero MP, Sierra S, Lara-Villoslada F, Fonollá J, Navas M, Rodríguez JM, Xaus J (2007) Oral intake of Lactobacillus fermentum CECT 5716 enhances the effects of influenza vaccination. Nutrition 23:254–260. doi: 10.1016/j.nut.2007.01.004
  32. Park JH, Lee YH, Moon EP, Seok SH, Baek MW, Lee HY, Kim DJ, Kim CH, Park JH (2005) Safety assessment of Lactobacillus fermentum PL9005, a potential probiotic lactic acid bacterium in mice. J Microbiol Biotechnol 15:603–608Google Scholar
  33. Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100:1171–1185. doi: 10.1111/j.1365-2672.2006.02963.x CrossRefPubMedGoogle Scholar
  34. Pavlova SI, Kilic AO, Kilic SS, So JS, Nader‐Macias ME, Simoes JA, Tao L (2002) Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences. J Appl Microbiol 92:451–459. doi: 10.1046/j.1365-2672.2002.01547.x CrossRefPubMedGoogle Scholar
  35. Raghavendra P, Halami PM (2009) Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine. Int J Food Microbiol 133:129–134. doi: 10.1016/j.ijfoodmicro.2009.05.006
  36. Roos S, Jonsson H (2002) A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148(2):433–442CrossRefPubMedGoogle Scholar
  37. Rosenberg M (1984) Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol Lett 22:289–295. doi: 10.1111/j.1574-6968.1984.tb00743.x CrossRefGoogle Scholar
  38. Rosenberg M (2006) Microbial adhesion to hydrocarbons: twenty‐five years of doing MATH. FEMS Microbiol Lett 262:129–134. doi: 10.1111/j.1574-6968.2006.00291.x CrossRefPubMedGoogle Scholar
  39. Sanz Y, Santacruz A, Gauffin P (2010) Gut microbiota in obesity and metabolic disorders. Proc Nutr Soc 69:434–441. doi: 10.1017/S0029665110001813 CrossRefPubMedGoogle Scholar
  40. Son S, Lewis BA (2002) Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure-activity relationship. J Agric Food Chem 50:468–472. doi: 10.1021/jf010830b CrossRefPubMedGoogle Scholar
  41. Strompfová V, Marciňáková M, Simonová M, Bogovič-Matijašić B, Lauková A (2006) Application of potential probiotic Lactobacillus fermentum AD1 strain in healthy dogs. Anaerobe 12:75–79. doi: 10.1016/j.anaerobe.2005.12.001 CrossRefPubMedGoogle Scholar
  42. Sui J, Leighton S, Busta F, Brady L (2002) 16S ribosomal DNA analysis of the faecal lactobacilli composition of human subjects consuming a probiotic strain Lactobacillus acidophilus NCFM®. J Appl Microbiol 93:907–912. doi: 10.1046/j.1365-2672.2002.01767.x CrossRefPubMedGoogle Scholar
  43. Švec P, Sedláček I, Chrápavá M, Vandamme P (2011) (GTG) 5-PCR fingerprinting of lactobacilli isolated from cervix of healthy women. Folia Microbiol 56:80–83. doi: 10.1007/s12223-011-0006-4 CrossRefGoogle Scholar
  44. Thapa N, Pal J, Tamang JP (2004) Microbial diversity in Ngari, Hentak and Tungtap, fermented fish products of north-east India. World J Microbiol Biotechnol 20:599–607. doi: 10.1023/B:WIBI. 0000043171.91027.7e CrossRefGoogle Scholar
  45. Turpin W, Humblot C, Guyot JP (2011) Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods. Appl Environ Microbiol 77:8722–8734. doi: 10.1128/AEM.05988-11 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Turpin W, Humblot C, Noordine ML, Thomas M, Guyot JP (2012) Lactobacillaceae and cell adhesion: genomic and functional screening. PloS One 7:1–14. doi: 10.1371/journal.pone.0038034 CrossRefGoogle Scholar
  47. Vijayendra SVN, Gupta RC (2012) Assessment of probiotic and sensory properties of dahi and yogurt prepared using bulk freeze-dried cultures in buffalo milk. Ann Microbiol 62:939–947. doi: 10.1007/s13213-011-0331-5 CrossRefGoogle Scholar
  48. Vinderola G, Capellini B, Villarreal F, Suárez V, Quiberoni A, Reinheimer J (2008) Usefulness of a set of simple in vitro tests for the screening and identification of probiotic candidate strains for dairy use. LWT-Food Sci Technol 41:1678–1688. doi: 10.1016/j.lwt.2007.10.008 CrossRefGoogle Scholar
  49. Vizoso Pinto MG, Franz CM, Schillinger U, Holzapfel WH (2006) Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. Int J Food Microbiol 109:205–214. doi: 10.1016/j.ijfoodmicro.2006.01.029 CrossRefPubMedGoogle Scholar
  50. Wall R, Fitzgerald G, Hussey S, Ryan T, Murphy B, Ross P, Stanton C (2007) Genomic diversity of cultivable Lactobacillus populations residing in the neonatal and adult gastrointestinal tract. FEMS Microbiol Ecol 59:127–137. doi: 10.1111/j.1574-6941.2006.00202.x CrossRefPubMedGoogle Scholar
  51. Wang AN, Yi XW, Yu HF, Dong B, Qiao SY (2009) Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing–finishing pigs. J Appl Microbiol 107:1140–1148. doi: 10.1111/j.1365-2672.2009.04294.x CrossRefPubMedGoogle Scholar
  52. Zárate G, Chaia AP, González S, Oliver G (2000) Viability and β-galactosidase activity of dairy propionibacteria subjected to digestion by artificial gastric and intestinal fluids. J Food Prot 63:1214–1221PubMedGoogle Scholar
  53. Zoumpopoulou G, Foligne B, Christodoulou K, Grangette C, Pot B, Tsakalidou E (2008) Lactobacillus fermentum ACA-DC 179 displays probiotic potential in vitro and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis and Salmonella infection in murine models. Int J Food Microbiol 121:18–26. doi: 10.1016/j.ijfoodmicro.2007.10.013 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Microbiology and Fermentation Technology DepartmentCSIR-Central Food Technological Research InstituteMysoreIndia

Personalised recommendations