Applied Microbiology and Biotechnology

, Volume 99, Issue 13, pp 5639–5646 | Cite as

Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis

  • Xue Zhang
  • Chong ZhangEmail author
  • Qian-Qian Zhou
  • Xiao-Fei Zhang
  • Li-Yan Wang
  • Hai-Bo Chang
  • He-Ping Li
  • Yoshimitsu Oda
  • Xin-Hui XingEmail author
Methods and protocols


DNA damage is the dominant source of mutation, which is the driving force of evolution. Therefore, it is important to quantitatively analyze the DNA damage caused by different mutagenesis methods, the subsequent mutation rates, and their relationship. Atmospheric and room temperature plasma (ARTP) mutagenesis has been used for the mutation breeding of more than 40 microorganisms. However, ARTP mutagenesis has not been quantitatively compared with conventional mutation methods. In this study, the umu test using a flow-cytometric analysis was developed to quantify the DNA damage in individual viable cells using Salmonella typhimurium NM2009 as the model strain and to determine the mutation rate. The newly developed method was used to evaluate four different mutagenesis systems: a new ARTP tool, ultraviolet radiation, 4-nitroquinoline-1-oxide (4-NQO), and N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The mutation rate was proportional to the corresponding SOS response induced by DNA damage. ARTP caused greater DNA damage to individual living cells than the other conventional mutagenesis methods, and the mutation rate was also higher. By quantitatively comparing the DNA damage and consequent mutation rate after different types of mutagenesis, we have shown that ARTP is a potentially powerful mutagenesis tool with which to improve the characteristics of microbial cell factories.


ARTP mutagenesis Flow cytometry Fluctuation test umu test SOS response 



This work was supported by the Tsinghua University Initiative Scientific Research Program (2011THZ 01019) and the JST CREST project of Japan.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ahmad I, Day JP, MacDonald MV, Ingram DS (1991) Haploid culture and UV mutagenesis in rapid-cycling Brassica napus for the generation of resistance to chlorsulfuron and Alternaria brassicicola. Ann Bot 67:521–525Google Scholar
  2. Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with Salmonella-mammalian-microsome mutagenicity test. Mutat Res 31:347–363. doi: 10.1016/0165-1161(75)90046-1 PubMedCrossRefGoogle Scholar
  3. Brock RD (1977) Prospects and perspectives in mutation breeding. In: Muhammed A, Aksel R, Borstel RC (eds) Genetic diversity in plants, vol 8, Basic Life Sciences, 1st edn. Springer, New York, pp 117–132Google Scholar
  4. Chen HX, Bai FW, Xiu ZL (2010) Oxidative stress induced in Saccharomyces cerevisiae exposed to dielectric barrier discharge plasma in air at atmospheric pressure. IEEE Trans Plasma Sci 38:1885–1891. doi: 10.1109/tps.2010.2046755 CrossRefGoogle Scholar
  5. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214. doi: 10.1096/fj.02-0752rev PubMedCrossRefGoogle Scholar
  6. de Gruijl FR, van Kranen HJ, Mullenders LHF (2001) UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol B 63:19–27. doi: 10.1016/S1011-1344(01)00199-3 PubMedCrossRefGoogle Scholar
  7. El Mzibri M, Guiraud-Dauriac H, Laget M, Beudot C, De Méo M, Duménil G (1997) Use of flow cytometry to detect genotoxins by the Salmonella sulA-test. Biotechnol Tech 11:467–470CrossRefGoogle Scholar
  8. Fang MY, Jin LH, Zhang C, Tan YY, Jiang PX, Ge N, Li HP, Xing XH (2013) Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes. PLoS One 8:e77046. doi: 10.1371/journal.pone.0077046 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Fiering SN, Roederer M, Nolan GP, Micklem DR, Parks DR, Herzenberg LA (1991) Improved FACS-Gal: flow cytometric analysis and sorting of viable eukaryotic cells expressing reporter gene constructs. Cytometry 12:291–301. doi: 10.1002/cyto.990120402 PubMedCrossRefGoogle Scholar
  10. Foster PL (2006) Methods for determining spontaneous mutation rates. In: Campbell JL, Modrich P (eds) Methods in enzymology, vol 409, Methods in enzymology. Academic, Waltham, pp 195–213Google Scholar
  11. Gaunt LF, Beggs CB, Georghiou GE (2006) Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Trans Plasma Sci 34:1257–1269. doi: 10.1109/tps.2006.878381 CrossRefGoogle Scholar
  12. Hall BM, Ma CX, Liang P, Singh KK (2009) Fluctuation AnaLysis CalculatOR: a web tool for the determination of mutation rate using Luria–Delbrück fluctuation analysis. Bioinformatics 25:1564–1565. doi: 10.1093/bioinformatics/btp253 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Hua XF, Wang J, Wu ZJ, Zhang HX, Li HP, Xing XH, Liu Z (2010) A salt tolerant Enterobacter cloacae mutant for bioaugmentation of petroleum- and salt-contaminated soil. Biochem Eng J 49:201–206. doi: 10.1016/j.bej.2009.12.014 CrossRefGoogle Scholar
  14. Jiang M, Wan Q, Liu RM, Liang LY, Chen X, Wu MK, Zhang HW, Chen KQ, Ma JF, Wei P, Ouyang PK (2014) Succinic acid production from corn stalk hydrolysate in an E. coli mutant generated by atmospheric and room temperature plasmas and metabolic evolution strategies. J Ind Microbiol Biotechnol 41:115–123. doi: 10.1007/s10295-013-1346-7 PubMedCrossRefGoogle Scholar
  15. Klein-Marcuschamer D, Stephanopoulos G (2008) Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc Natl Acad Sci U S A 105:2319–2324. doi: 10.1073/pnas.0712177105 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Klein-Marcuschamer D, Stephanopoulos G (2010) Method for designing and optimizing random-search libraries for strain improvement. Appl Environ Microbiol 76:5541–5546. doi: 10.1128/aem.00828-10 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Kodym A, Afza R (2003) Physical and chemical mutagenesis. In: Grotewold E (ed) Plant functional genomics, vol 236. Humana Press, New York, pp 189–203CrossRefGoogle Scholar
  18. Krishna S, Maslov S, Sneppen K (2007) UV-induced mutagenesis in Escherichia coli SOS response: a quantitative model. PLoS Comput Biol 3:451–462. doi: 10.1371/journal.pcbi.0030041 CrossRefGoogle Scholar
  19. Lang GI, Murray AW (2008) Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178:67–82. doi: 10.1534/genetics.107.071506 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Laroussi M, Richardson JP, Dobbs FC (2002) Effects of nonequilibrium atmospheric pressure plasmas on the heterotrophic pathways of bacteria and on their cell morphology. Appl Phys Lett 81:772–774. doi: 10.1063/1.1494863 CrossRefGoogle Scholar
  21. Lee H, Popodi E, Tang HX, Foster PX (2012) Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci U S A 109:E2774–E2783. doi: 10.1073/pnas.1210309109 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Li G, Li HP, Wang LY, Wang S, Zhao HX, Sun WT, Xing XH, Bao CY (2008) Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Appl Phys Lett 92:1–3. doi: 10.1063/1.2938692 Google Scholar
  23. Li HP, Wang LY, Li G, Jin LH, Le PS, Zhao HX, Xing XH, Bao CY (2011) Manipulation of lipase activity by the helium radio-frequency, atmospheric-pressure glow discharge plasma jet. Plasma Processes Polym 8:224–229. doi: 10.1002/ppap.201000035 CrossRefGoogle Scholar
  24. Li HP, Wang ZB, Ge N, Le PS, Wu H, Lu Y, Wang LY, Zhang C, Bao CY, Xing XH (2012) Studies on the physical characteristics of the radio-frequency atmospheric-pressure glow discharge plasmas for the genome mutation of Methylosinus trichosporium. IEEE Trans Plasma Sci 40:2853–2860. doi: 10.1109/tps.2012.2213274 CrossRefGoogle Scholar
  25. Liu RM, Liang LY, Ma JF, Ren XY, Jiang M, Chen KQ, Wei P, Ouyang PK (2013) An engineering Escherichia coli mutant with high succinic acid production in the defined medium obtained by the atmospheric and room temperature plasma. Process Biochem 48:1603–1609. doi: 10.1016/j.procbio.2013.07.020 CrossRefGoogle Scholar
  26. Lu C, Scheuermann RH, Echols H (1986) Capacity of RecA protein to bind preferentially to UV lesions and inhibit the editing subunit (epsilon) of DNA polymerase III: a possible mechanism for SOS-induced targeted mutagenesis. Proc Natl Acad Sci U S A 83:619–623PubMedCentralPubMedCrossRefGoogle Scholar
  27. Luria SE, Delbruck M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511PubMedCentralPubMedGoogle Scholar
  28. Lynch M (2010) Evolution of the mutation rate. Trends Genet 26:345–352. doi: 10.1016/j.tig.2010.05.003 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Miao Z-H, Rao VA, Agama K, Antony S, Kohn KW, Pommier Y (2006) 4-nitroquinoline-1-oxide induces the formation of cellular topoisomerase I-DNA cleavage complexes. Cancer Res 66:6540–6545. doi: 10.1158/0008-5472.can-05-4471 PubMedCrossRefGoogle Scholar
  30. Nolan GP, Fiering S, Nicolas JF, Herzenberg LA (1988) Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-D-galactosidase activity after transduction of Escherichia coli lacZ. Proc Natl Acad Sci U S A 85:2603–2607. doi: 10.1073/pnas.85.8.2603 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Oda Y, Nakamura S, Oki I, Kato T, Shinagawa H (1985) Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat Res 147:219–229PubMedCrossRefGoogle Scholar
  32. Oda Y, Yamazaki H, Watanabe M, Nohmi T, Shimada T (1993) Highly sensitive umu test system for the detection of mutagenic nitroarenes in Salmonella typhimurium NM3009 having high O-acetyltransferase and nitroreductase activities. Environm Mol Mutagen 21:357–364. doi: 10.1002/em.2850210407 CrossRefGoogle Scholar
  33. Oda Y, Yamazaki H, Watanabe M, Nohmi T, Shimada T (1995) Development of high sensitive umu test system: rapid detection of genotoxicity of promutagenic aromatic amines by Salmonella typhimurium strain NM2009 possessing high O-acetyltransferase activity. Mutat Res, Environ Mutagen Relat Subj 334:145–156. doi: 10.1016/0165-1161(95)90005-5 Google Scholar
  34. Plovins A, Alvarez AM, Ibañez M, Molina M, Nombela C (1994) Use of fluorescein-di-β-D-galactopyranoside (FDG) and C12-FDG as substrates for β-galactosidase detection by flow cytometry in animal, bacterial, and yeast cells. Appl Environ Microbiol 60:4638–4641PubMedCentralPubMedGoogle Scholar
  35. Ptitsyn LR, Horneck G, Komova O, Kozubek S, Krasavin EA, Bonev M, Rettberg P (1997) A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells. Appl Environ Microbiol 63:4377–4384PubMedCentralPubMedGoogle Scholar
  36. Quillardet P, Huisman O, Dari R, Hofnung M (1982) SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proc Natl Acad Sci U S A 79:5971–5975. doi: 10.1073/pnas.79.19.5971 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Rosche WA, Foster PL (2000) Determining mutation rates in bacterial populations. Methods 20:4–17. doi: 10.1006/meth.1999.0901 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Schaaper RM (1993) The mutational specificity of two Escherichia coli dnaE antimutator alleles as determined from lacI mutation spectra. Genetics 134:1031–1038PubMedCentralPubMedGoogle Scholar
  39. Schaaper RM, Dunn RL (1987) Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A 84:6220–6224. doi: 10.1073/pnas.84.17.6220 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Schutze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci 26:1685–1694. doi: 10.1109/27.747887 CrossRefGoogle Scholar
  41. Sinha RP, Hader DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236. doi: 10.1039/b201230h PubMedCrossRefGoogle Scholar
  42. Slamenova D, Gabelova A, Ruzekova L, Chalupa I, Horvathova E, Farkasova T, Bozsakyova E, Stetina R (1997) Detection of MNNG-induced DNA lesions in mammalian cells; validation of comet assay against DNA unwinding technique, alkaline elution of DNA and chromosomal aberrations. Mutat Res 383:243–252. doi: 10.1016/s0921-8777(97)00007-4 PubMedCrossRefGoogle Scholar
  43. Smith BT, Walker GC (1998) Mutagenesis and more: umuDC and the Escherichia coli SOS response. Genetics 148:1599–1610PubMedCentralPubMedGoogle Scholar
  44. Song YZ, Li GH, Thornton SF, Thompson IP, Banwart SA, Lerner DN, Huang WE (2009) Optimization of bacterial whole cell bioreporters for toxicity assay of environmental samples. Environ Sci Technol 43:7931–7938. doi: 10.1021/es901349r PubMedCrossRefGoogle Scholar
  45. Walker GC (1995) SOS-regulated proteins in translesion DNA-synthesis and mutagenesis. Trends Biochem Sci 20:416–420. doi: 10.1016/s0968-0004(00)89091-x PubMedCrossRefGoogle Scholar
  46. Wang LY (2009) Studies on the mechanisms and applications of the atmospheric room temperature plasmas acting on the microbes. University, TsinghuaGoogle Scholar
  47. Wang LY, Huang ZL, Li G, Zhao HX, Xing XH, Sun WT, Li HP, Gou ZX, Bao CY (2010) Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J Appl Microbiol 108:851–858. doi: 10.1111/j.1365-2672.2009.04483.x PubMedCrossRefGoogle Scholar
  48. Wielgoss S, Barrick JE, Tenaillon O, Wiser MJ, Dittmar WJ, Cruveiller S, Chane-Woon-Ming B, Medigue C, Lenski RE, Schneider D (2013) Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proc Natl Acad Sci U S A 110:222–227. doi: 10.1073/pnas.1219574110 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Yasunaga K, Kiyonari A, Oikawa T, Abe N, Yoshikawa K (2004) Evaluation of the Salmonella umu test with 83 NTP chemicals. Environ Mol Mutagen 44:329–345. doi: 10.1002/em.20053 PubMedCrossRefGoogle Scholar
  50. Yasunaga K, Kiyonari A, Nakagawa M, Yoshikawa K (2006) Investigation into the ability of the Salmonella umu test to detect DNA damage using antitumor drugs. Toxicol In Vitro 20:712–728. doi: 10.1016/j.tiv.2005.10.007 PubMedCrossRefGoogle Scholar
  51. Yu H, Xiu ZL, Ren CS, Zhang JL, Wang DZ, Wang YN, Ma TC (2005) Inactivation of yeast by dielectric barrier discharge (DBD) plasma in helium at atmospheric pressure. IEEE Trans Plasma Sci 33:1405–1409. doi: 10.1109/tps.2005.851961 CrossRefGoogle Scholar
  52. Zhang X, Zhang XF, Li HP, Wang LY, Zhang C, Xing XH, Bao CY (2014a) Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol 98:5387–5396. doi: 10.1007/s00253-014-5755-y PubMedCrossRefGoogle Scholar
  53. Zhang X, Zhang XF, Wang LY, Zhang C, Chen YY, Chang HB, Li HP, Xing XH (2014b) Recent progress on atmospheric and room temperature plasma mutation breeding technology and its applications. Huagong Xuebao 65:2676–2684Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xue Zhang
    • 1
  • Chong Zhang
    • 1
    • 2
    Email author
  • Qian-Qian Zhou
    • 2
  • Xiao-Fei Zhang
    • 3
  • Li-Yan Wang
    • 1
    • 2
  • Hai-Bo Chang
    • 1
  • He-Ping Li
    • 2
    • 3
  • Yoshimitsu Oda
    • 4
  • Xin-Hui Xing
    • 1
    • 2
    Email author
  1. 1.Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Department of Chemical EngineeringTsinghua UniversityBeijingChina
  2. 2.Biobreeding Research Center, Wuxi Research Institute of Applied TechnologiesTsinghua UniversityWuxiChina
  3. 3.Department of Engineering PhysicsTsinghua UniversityBeijingChina
  4. 4.Institute of Life and Environmental SciencesOsaka Shin-Ai CollegeOsakaJapan

Personalised recommendations