Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 16, pp 6677–6691 | Cite as

Fruit peels support higher yield and superior quality bacterial cellulose production

  • Jyoti Vasant Kumbhar
  • Jyutika Milind Rajwade
  • Kishore Madhukar Paknikar
Biotechnological products and process engineering

Abstract

Fruit peels, also known as rinds or skins, are wastes readily available in large quantities. Here, we have used pineapple (PA) and watermelon (WM) peels as substrates in the culture media (containing 5 % sucrose and 0.7 % ammonium sulfate) for production of bacterial cellulose (BC). The bacterial culture used in the study, Komagataeibacter hansenii produced BC under static conditions as a pellicle at the air–liquid interface in standard Hestrin and Schramm (HS) medium. The yield obtained was ~3.0 g/100 ml (on a wet weight basis). The cellulosic nature of the pellicle was confirmed by CO2, H2O, N2, and SO2 (CHNS) analysis and Fourier transform infrared (FT-IR) spectroscopy. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) of the pellicle revealed the presence of flat twisted ribbonlike fibrils (70–130 nm wide). X-ray diffraction analysis proved its crystalline nature (matching cellulose I) with a crystallinity index of 67 %. When K. hansenii was grown in PA and WM media, BC yields were threefolds or fourfolds higher than those obtained in HS medium. Interestingly, textural characterization tests (viz., SEM, crystallinity index, resilience, hardness, adhesiveness, cohesiveness, springiness, shear energy and stress, and energy required for puncturing the pellicle) proved that the quality of BC produced in PA and WM media was superior to the BC produced in HS medium. These findings demonstrate the utility of the newly designed media for getting higher yields and better quality of BC, which could make fermentative production of BC more attractive on a commercial scale.

Keywords

Komagataeibacter hansenii MCM B-967 Bacterial cellulose Pineapple peels Watermelon peels Textural properties 

Notes

Acknowledgments

JVK is thankful to CSIR, Govt. of India, New Delhi for providing research fellowship. Authors acknowledge financial support from DST, Govt. of India, New Delhi for carrying out the research.

Conflict of interest

None

References

  1. Anon (2012) FSSAI lab manual no. 5. Manual of methods of analysis of foods (fruits and vegetables). Government of India, New DelhiGoogle Scholar
  2. Ashori A, Sheykhnazari S, Tabarsa T, Shakeri A, Golalipour M (2012) Bacterial cellulose/silica nanocomposites: preparation and characterization. Carbohydr Polym 90:413–418. doi: 10.1016/j.carbpol.2012.05.060 PubMedCrossRefGoogle Scholar
  3. Aydin YA, Aksoy ND (2009) Isolation of cellulose producing bacteria from wastes of vinegar fermentation. Proceedings of the World Congress on Engineering and Computer Science I:20–23Google Scholar
  4. Aydin YA, Aksoy ND (2014) Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol 98:1065–1075. doi: 10.1007/s00253-013-5296-9 PubMedCrossRefGoogle Scholar
  5. Bae S, Shoda M (2005) Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnol Bioeng 90:20–28. doi: 10.1002/bit.20325 PubMedCrossRefGoogle Scholar
  6. Barud HS, Ribeiro SJL, Carone CL, Ligabue R, Einloft S, Queiroz PVS, Borges APB, Jahno VD (2013) Optically transparent membrane based on bacterial cellulose/polycaprolactone. Polímeros 23:135–138. doi: 10.1590/S0104-14282013005000018 Google Scholar
  7. Blaker JJ, Lee KY, Mantalaris A, Bismarck A (2010) Ice-microsphere templating to produce highly porous nanocomposite PLA matrix scaffolds with pores selectively lined by bacterial cellulose nano-whiskers. Compos Sci Technol 70:1879–1888. doi: 10.1016/j.compscitech.2010.05.028 CrossRefGoogle Scholar
  8. Bottom R (2008) Thermogravimetric analysis. In: Gabbott P (ed) Principles and applications of thermal analysis. Blackwell Publishing, UK, pp 87–118CrossRefGoogle Scholar
  9. Bridson EY, Brecker A (1970) Chapter III Design and formulation of microbial culture media. In: Norris JR, Ribbons DW (eds) Methods in microbiology. U.S. Academic Press Inc., pp 22–295Google Scholar
  10. Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetic aspects of bacterial cellulose focbrsrmation in nata-de-coco culture system. Carbohydr Polym 40:137–143. doi: 10.1016/S0144-8617(99)00050-8 CrossRefGoogle Scholar
  11. Campbell M (2006) Extraction of pectin from watermelon rind. Dissertation, Oklahoma State UniversityGoogle Scholar
  12. Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102. doi: 10.1016/j.carbpol.2010.10.072 CrossRefGoogle Scholar
  13. Castro C, Zuluaga R, Álvarez C, Putaux JL, Caro G, Rojas OJ, Mondragon I, Gañán P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89:1033–1037. doi: 10.1016/j.carbpol.2012.03.045 PubMedCrossRefGoogle Scholar
  14. Chao Y, Ishida T, Sugano Y, Shoda M (2000) Bacterial cellulose production by Acetobacter xylinum in a 50‐l internal‐loop airlift reactor. Biotechnol Bioeng 68:345–352. doi: 10.1002/(SICI)1097-0290(20000505)68:3<345::AID-BIT13>3.0.CO;2-M PubMedCrossRefGoogle Scholar
  15. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124Google Scholar
  16. Chen L, Hong F, Yang XX, Han SF (2013) Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresour Technol 135:464–468. doi: 10.1016/j.biortech.2012.10.029 PubMedCrossRefGoogle Scholar
  17. Ching CH, Muhammad II (2007) Evaluation and optimization of microbial cellulose (nata) production using pineapple waste as substrate. In: National research and innovation competition (NRIC), Penang, MalaysiaGoogle Scholar
  18. Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411. doi: 10.1023/B:CELL.0000046412.11983.61 CrossRefGoogle Scholar
  19. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12. doi: 10.1021/bm060620d PubMedCrossRefGoogle Scholar
  20. Dobre LM, Stoica-Guzun A, Stroescu M, Jipa IM, Dobre T, Ferdeş M, Ciumpiliac Ş (2012) Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films. Chem Pap 66:144–151. doi: 10.2478/s11696-011-0086-2 CrossRefGoogle Scholar
  21. Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi: 10.1021/ac60111a017 CrossRefGoogle Scholar
  22. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. doi: 10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  23. El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. Bioresour 3:1196–1217Google Scholar
  24. Embuscado ME, Marks JS, BeMiller JN (1994) Bacterial cellulose: I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocolloid 8:407–418. doi: 10.1016/S0268-005X(09)80084-2 CrossRefGoogle Scholar
  25. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  26. Ford ENJ, Mendon SK, Thames SF, Rawlins JW (2010) X-ray diffraction of cotton treated with neutralized vegetable oil-based macromolecular crosslinkers. J Eng Fiber Fabr 5:10–20Google Scholar
  27. Gadim TDO, Figueiredo AGPR, Rosero-Navarro NC, Vilela C, Gamelas JAF, Barros-Timmons A, Neto CP, Silvestre AJD, Freire CSR, Figueiredo FML (2014) Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity. ACS Appl Mater Interfaces 6:7864–7875. doi: 10.1021/am501191t PubMedCrossRefGoogle Scholar
  28. George J, Ramana KV, Sabapathy SN, Bawa AS (2005) Physico-mechanical properties of chemically treated bacterial (Acetobacter xylinum) cellulose membrane. World J Microbiol Biotechnol 21:1323–1327. doi: 10.1007/s11274-005-3574-0 CrossRefGoogle Scholar
  29. Haigler CH, White AR, Brown RM, Cooper KAYM (1982) Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. 94:0–5. PMCID:PMC2112193Google Scholar
  30. Haimer E, Wendland M, Schlufter K, Frankenfeld K, Miethe P, Potthast A, Rosenau T, Liebner F (2010) Loading of bacterial cellulose aerogels with bioactive compounds by antisolvent precipitation with supercritical carbon dioxide. Macromol Symp 294:64–74. doi: 10.1002/masy.201000008 CrossRefGoogle Scholar
  31. Hemalatha R, Anbuselvi S (2013) Physicohemical constituents of pineapple pulp and waste. J Chem Pharm Res 5:240–242Google Scholar
  32. Hong F, Qiu K (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr Polym 72:545–549. doi: 10.1016/j.carbpol.2007.09.015 CrossRefGoogle Scholar
  33. Hong F, Zhu YX, Yang G, Yang XX (2011) Wheat straw acid hydrolysate as a potential cost‐effective feedstock for production of bacterial cellulose. J Chem Technol Biol 86:675–680. doi: 10.1002/jctb.2567 CrossRefGoogle Scholar
  34. Hu W, Chen S, Liu L, Ding B, Wang H (2011) Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sensors Actuators B Chem 157:554–559. doi: 10.1016/j.snb.2011.05.021 CrossRefGoogle Scholar
  35. Hungund BS, Gupta SG (2010) Strain improvement of Gluconacetobacter xylinus NCIM 2526 for bacterial cellulose production. Afr J Biotechnol 9:5170–5172. doi: 10.5897/AJB09.1877 Google Scholar
  36. Hungund B, Prabhu S, Shetty C, Acharya S, Prabhu V, Gupta SG (2013) Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. J Microb Biochem Technol 5:2. doi: 10.4172/1948-5948.1000095 Google Scholar
  37. Jagannath A, Manjunatha SS, Ravi N, Raju PS (2011) The effect of different substrates and processing conditions on the textural characteristics of bacterial cellulose (nata) produced by Acetobacter xylinum. J Food Process Eng 34:593–608. doi: 10.1111/j.1745-4530.2009.00403.x CrossRefGoogle Scholar
  38. Kersters K, Lisdiyanti P, Komagata K, Swings J (2006) The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In: Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes, 3rd edn. Springer, New York, pp 163–200CrossRefGoogle Scholar
  39. Keshk SMAS, Sameshima K (2005) Evaluation of different carbon sources for bacterial cellulose production. Afr J Biotechnol 4:478–482Google Scholar
  40. Keshk SMAS, Razek TMA, Sameshima K (2006) Bacterial Cellulose Production from Beet Molasses. Afr J Biotechnol 5:1519–1523Google Scholar
  41. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi: 10.1007/BF01731581 PubMedCrossRefGoogle Scholar
  42. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose synthesized artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603. doi: 10.1016/S0079-6700(01)00021-1 CrossRefGoogle Scholar
  43. Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256. doi: 10.1007/s12010-007-8119-6 PubMedCrossRefGoogle Scholar
  44. Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333–335. doi: 10.1016/j.carbpol.2008.11.009 CrossRefGoogle Scholar
  45. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi: 10.1093/bioinformatics/btm404 PubMedCrossRefGoogle Scholar
  46. Larrauri A, Rupe P, Calixto FS (1997) Pineapple shell as a source of dietary fiber with associated polyphenols. J Agric Food Chem 45:4028–4031. doi: 10.1021/jf970450j CrossRefGoogle Scholar
  47. Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32. doi: 10.1002/mabi.201300298 PubMedCrossRefGoogle Scholar
  48. Lestari P, Elfrida N, Suryani A, Suryadi Y (2014) Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan J Biol Sci 7:75–80CrossRefGoogle Scholar
  49. Lu H, Jiang X (2014) Structure and properties of bacterial cellulose produced using a trickling bed reactor. Appl Biochem Biotech 172:3844–3861. doi: 10.1007/s12010-014-0795-4 CrossRefGoogle Scholar
  50. Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523. doi: 10.1016/j.carbpol.2014.10.008 PubMedCrossRefGoogle Scholar
  51. Mohanraj R, Deore PS, Paul N (2011) Phylogeny reconstruction of Acetobacter species by RAPD (random amplified polymorphic DNA) markers. Recent Res Sci Technol 3:100–102Google Scholar
  52. Moosavi-Nasab M, Yousefi AR, Askari H, Bakhtiyari M (2010) Fermentative production and characterization of carboxymethyl bacterial cellulose using date syrup. World Acad Sci Eng Technol 68:1467–1471Google Scholar
  53. Munoz AM (1986) Development and application of texture reference scales. J Sens Stud 1:55–83. doi: 10.1111/j.1745-459X.1986.tb00159.x CrossRefGoogle Scholar
  54. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700, PMCID:PMC202176 PubMedCentralPubMedGoogle Scholar
  55. Nakai T, Tonouchi N, Konishi T, Kojima Y, Tsuchida T, Yoshinaga F, Sakai F, Hayashi T (1999) Enhancement of cellulose production by expression of sucrose synthase in Acetobacter xylinum. Proc Natl Acad Sci U S A 96:14–18. doi: 10.1073/pnas.96.1.14 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type: Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341. doi: 10.1002/app.1964.070080323 CrossRefGoogle Scholar
  57. Park JK, Jung JY, Park YH (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 25:2055–2059. doi: 10.1023/B:BILE.0000007065.63682.18 PubMedCrossRefGoogle Scholar
  58. Pourramezan GZ, Roayaei AM, Qezelbash QR (2009) Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2. Biotechnol 8:150–154CrossRefGoogle Scholar
  59. Raghunathan D (2013) Production of microbial cellulose from the new bacterial strain isolated from temple wash waters. Int J Curr Microbiol App Sci 2:275–290Google Scholar
  60. Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99:2491–2511. doi: 10.1007/s00253-015-6426-3 PubMedCrossRefGoogle Scholar
  61. Ramirez-Flores J, Rubio E, Rodriguez-Lugo V, Castano VM (2009) Purification of polluted waters by functionalized membranes. Rev Adv Mater Sci 21:211–216Google Scholar
  62. Rawlings DE (1995) Restriction enzyme analysis of 16S rDNA for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans, and Leptospirillum ferrooxidans strains in leaching environments. In: Jerez CA, Vargas T, Toledo H, Wiertz JV (eds) Biohydrometallurgical processing, vol II. University of Chile, Santiago, pp 9–17Google Scholar
  63. Rezaee A, Godini H, Bakhtou H (2008) Microbial cellulose as support material for the immobilization of denitrifying bacteria. Environ Eng Manage J 7:589–594Google Scholar
  64. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58, PMCID:PMC372800 PubMedCentralPubMedGoogle Scholar
  65. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  66. Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129. doi: 10.1099/00221287-11-1-123 PubMedCrossRefGoogle Scholar
  67. Schrecker ST, Gostomski PA (2005) Determining the water holding capacity of microbial cellulose. Biotechnol Lett 27:1435–1438. doi: 10.1007/s10529-005-1465-y PubMedCrossRefGoogle Scholar
  68. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi: 10.1177/004051755902901003 CrossRefGoogle Scholar
  69. Shah J, Brown RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352–355. doi: 10.1007/s00253-004-1756-6 PubMedCrossRefGoogle Scholar
  70. Sheykhnazari S, Tabarsa T, Ashori A, Shakeri A, Golalipour M (2011) Bacterial synthesized cellulose nanofibers: effects of growth times and culture mediums on the structural characteristics. Carbohydr Polym 86:1187–1191. doi: 10.1016/j.carbpol.2011.06.011 CrossRefGoogle Scholar
  71. Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food hydrocolloid 35:539–545. doi: 10.1016/j.foodhyd.2013.07.012 CrossRefGoogle Scholar
  72. Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8. doi: 10.1007/BF02931175 CrossRefGoogle Scholar
  73. Sievers M, Swings J (2005) Family II: Acetobacteraceae. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 41–96Google Scholar
  74. Smith BG, Harris PJ (1995) Polysaccharide composition of unlignified cell walls of pineapple [Ananas comosus (L.) Merr] fruit. Plant Physiol 107:1399–1409PubMedCentralPubMedCrossRefGoogle Scholar
  75. Soares S, Camino G, Levchik S (1995) Comparative study of the thermal decomposition of pure cellulose and pulp paper. Polym Degrad Stabil 49:275–283. doi: 10.1016/0141-3910(95)87009-1 CrossRefGoogle Scholar
  76. Sun JX, Xu F, Sun XF, Xiao B, Sun RC (2005) Physico-chemical and thermal characterization of cellulose from barley straw. Polym Degrad Stabil 88:521–531. doi: 10.1016/j.polymdegradstab.2004.12.013 CrossRefGoogle Scholar
  77. Surma-ślusarska B, Presler S, Danielewicz D (2008) Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibres Text East Eur 16:108–111Google Scholar
  78. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  79. Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) CP/MAS 13 C NMR and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides. Cellulose 9:351–360. doi: 10.1023/A:1021150520953 CrossRefGoogle Scholar
  80. Ul-Islam M, Khan T, Parka JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohyd Polym 88:596–603. doi: 10.1016/j.carbpol.2012.01.006 CrossRefGoogle Scholar
  81. Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stab 59:93–99. doi: 10.1016/S0141-3910(97)00185-7 CrossRefGoogle Scholar
  82. Wee Y, Kim S, Yoon S, Ryu H (2011) Isolation and characterization of a bacterial cellulose-producing bacterium derived from the persimmon vinegar. African J Biotechnol 10:16267–16276. doi: 10.5897/AJB11.2036 Google Scholar
  83. Williams WS, Cannon RE (1989) Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl Environ Microbiol 55:2448–2452PubMedCentralPubMedGoogle Scholar
  84. Wu ZY, Li C, Liang HW, Chen JF, Yu SH (2013) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem Int Ed Engl 52:2925–2929. doi: 10.1002/anie.201209676 PubMedCrossRefGoogle Scholar
  85. Yamada (2013) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 63:1–5. doi: 10.1099/ijs.0.049312-0 CrossRefGoogle Scholar
  86. Yamada Y, Yukphan P, Lan Vu HT, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58:397–404. doi: 10.2323/jgam.58.397 PubMedCrossRefGoogle Scholar
  87. Yang Y, Jia J, Xing J, Chen J, Lu S (2013) Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohydr Polym 92:2012–2017. doi: 10.1016/j.carbpol.2012.11.065 PubMedCrossRefGoogle Scholar
  88. Zakaria J, Nazeri MA (2012) Optimization of bacterial cellulose production from pineapple waste: effect of temperature, pH and concentration. In: EnCon 2012, 5th engineering conference, “Engineering towards change — empowering green solutions,” 10–12th July 2012, Kuching, SarawakGoogle Scholar
  89. Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160. doi: 10.1002/adfm.200902104 CrossRefGoogle Scholar
  90. Zhang X, Fang Y, Chen W (2013) Preparation of silver/bacterial cellulose composite membrane and study on its antimicrobial activity. Synth React Inorganic Met Nano-Metal Chem 43:907–913. doi: 10.1080/15533174.2012.750674 CrossRefGoogle Scholar
  91. Zhu H, Jia S, Yang H, Tang W, Jia Y, Tan Z (2010) Characterization of bacteriostatic sausage casing: a composite of bacterial cellulose embedded with ε-polylysine. Food Sci Biotechnol 19:1479–1484. doi: 10.1007/s10068-010-0211-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Centre for Nanobioscience, Agharkar Research InstitutePuneIndia

Personalised recommendations