Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 13, pp 5739–5748 | Cite as

Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors

  • Zong-Xia Shui
  • Han Qin
  • Bo Wu
  • Zhi-yong Ruan
  • Lu-shang Wang
  • Fu-Rong Tan
  • Jing-Li Wang
  • Xiao-Yu Tang
  • Li-Chun Dai
  • Guo-Quan Hu
  • Ming-Xiong He
Bioenergy and biofuels

Abstract

Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84 % theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89 %. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the “omics” level, which will provide some useful information for inverse metabolic engineering.

Keywords

Adaptive laboratory evolution (ALE) Lignocellulosic hydrolysates Furfural Acetic acid Bioethanol Zymomonas mobilis 

Notes

Acknowledgments

This work was supported by Open Funds of State Key Laboratory of Microbial Technology (Shandong University, M2013-07), Open Funds of Key Laboratory of Microbial Resources Collection and Preservation (Ministry of Agriculture, MOA, 2013). Partially supported by Open Funds of Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin (Tarim University, BRZD1403). Partially supported by Youth Science and Technology Foundation of Sichuan Province (2015JQO047).

Conflict of interests

The authors declare that they have no competing interests.

References

  1. Agrawal M, Mao Z, Chen RR (2011) Adaptation yields a highly efficient xylose‐fermenting Zymomonas mobilis strain. Biotechnol Bioeng 108(4):777–785PubMedCrossRefGoogle Scholar
  2. Ali Mohagheghi JL, Smith H, Yang S, Dowe N, Pienkos PT (2014) Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2-deoxyglucose. Biotechnol Biofuels 7:19PubMedCentralPubMedCrossRefGoogle Scholar
  3. Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Tech Biotechnol 82(4):340–349CrossRefGoogle Scholar
  4. Baumler DJ, Hung KF, Bose JL, Vykhodets BM, Cheng CM, Jeong KC, Kaspar CW (2006) Enhancement of acid tolerance in Zymomonas mobilis by a proton-buffering peptide. Appl Biochem Biotechnol 134(1):15–26PubMedCrossRefGoogle Scholar
  5. Cakar ZP, Turanlı‐Yıldız B, Alkım C, Yılmaz Ü (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12(2):171–182PubMedCrossRefGoogle Scholar
  6. Chatterjee R, Yuan L (2006) Directed evolution of metabolic pathways. Trends Biotechnol 24(1):28–38PubMedCrossRefGoogle Scholar
  7. Conrad TM, Lewis NE, Palsson BØ (2011) Microbial laboratory evolution in the era of genome-scale science. Mol Syst Biol 7(1):509PubMedCentralPubMedCrossRefGoogle Scholar
  8. Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Liden G, Dumortier F (2013) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6(1):89PubMedCentralPubMedCrossRefGoogle Scholar
  9. Dhar R, Sägesser R, Weikert C, Yuan J, Wagner A (2011) Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J Evol Biol 24(5):1135–1153PubMedCrossRefGoogle Scholar
  10. Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution-principles and applications for biotechnology. Microb Cell Fact 12:64PubMedCentralPubMedCrossRefGoogle Scholar
  11. Franden MA, Pienkos PT, Zhang M (2009) Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. J Biotechnol 144(4):259–267PubMedCrossRefGoogle Scholar
  12. Franden MA, Pilath HM, Mohagheghi A, Pienkos PT, Zhang M (2013) Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates. Biotechnol Biofuels 6:99PubMedCentralPubMedCrossRefGoogle Scholar
  13. Goodman AE, Rogers PL, Skotnicki ML (1982) Minimal medium for isolation of auxotrophic Zymomonas mutants. Appl Environ Microbiol 44(2):496–498PubMedCentralPubMedGoogle Scholar
  14. Gutierrez-Padilla MGD, Karim MN (2005) Influence of furfural on the recombinant Zymomonas mobilis strain CP4 (pZB5) for ethanol production. J Am Sci 1(1):24–27Google Scholar
  15. Han B, Carvalho W, Canilha L, da Silva SS, Almeida e Silva JB, McMillan JD, Wickramasinghe SR (2006) Adsorptive membranes vs. resins for acetic acid removal from biomass hydrolysates. Desalination 193(1–3):361–366CrossRefGoogle Scholar
  16. He MX, WU B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH (2012) Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl Microbiol Biotechnol 95:189–199PubMedCrossRefGoogle Scholar
  17. He MX, Wu B, Qin H, Ruan ZY, Tan FR, Wang JL, Shui ZX, Dai LC, Zhu QL, Pan K, Tang XY, Wang WG, Hu QC (2014) Zymomonas mobilis: a novel platform for future biorefineries. Biotechnol Biofuels 7(1):101PubMedCentralPubMedCrossRefGoogle Scholar
  18. Hua Q, Joyce AR, Palsson BØ, Fong SS (2007) Metabolic characterization of Escherichia coli strains adapted to growth on lactate. Appl Environ Microbiol 73(14):4639–4647PubMedCentralPubMedCrossRefGoogle Scholar
  19. Jeon YJ, Svenson CJ, Joachimsthal EL, Rogers PL (2002) Kinetic analysis of ethanol production by an acetate-resistant strain of recombinant Zymomonas mobilis. Biotechnol Lett 24(10):819–824CrossRefGoogle Scholar
  20. Jeon YJ, Svenson CJ, Rogers PL (2005) Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis. FEMS Microbiol Lett 244(1):85–92PubMedCrossRefGoogle Scholar
  21. Joachimsthal E, Haggett KD, Jang J-H, Rogers PL (1998) A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentrations. Biotechnol Lett 20(2):137–142CrossRefGoogle Scholar
  22. Lee D-H, Palsson BØ (2010) Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a nonnative carbon source, L-1, 2-propanediol. Appl Environ Microbiol 76(13):4158–4168PubMedCentralPubMedCrossRefGoogle Scholar
  23. Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2:26PubMedCentralPubMedCrossRefGoogle Scholar
  24. Mohagheghi A, Dowe N, Schell D, Chou YC, Eddy C, Zhang M (2004) Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnol Lett 26(4):321–325PubMedCrossRefGoogle Scholar
  25. Pál C, Papp B, Lercher MJ (2005) Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 37(12):1372–1375PubMedCrossRefGoogle Scholar
  26. Portnoy VA, Bezdan D, Zengler K (2011) Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Curr Opin Biotechnol 22(4):590–594PubMedCrossRefGoogle Scholar
  27. Ranatunga T, Jervis J, Helm R, McMillan J, Hatzis C (1997) Identification of inhibitory components toxic toward Zymomonas mobilis CP4(pZB5) xylose fermentation. Appl Biochem Biotechnol 67(3):185–198CrossRefGoogle Scholar
  28. Shin H, Rogers P (1995) Biotransformation of benzeldehyde to L-phenylacetylcarbinol, an intermediate in L-ephedrine production, by immobilized Candida utilis. Appl Microbiol Biotechnol 44(1-2):7–14CrossRefGoogle Scholar
  29. Viitanen PV, Tao L, Knoke K, Zhang Y, Caimi PG, Zhang M, Chou Y, Franden MA (2009) Process for the production of ethanol from a medium comprising xylose, employing a recombinant Zymomonas strain having a reduced himA expression. Patent WO/2009/058938Google Scholar
  30. Viitanen PV, Tao L, Knoke K, Zhang Y, Caimi PG, Zhang M, Chou Y-c, Franden MA (2012) Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate. EP Patent 2,209,899Google Scholar
  31. Wallace-Salinas V, Gorwa-Grauslund MF (2013) Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol Biofuels 6(1):151PubMedCentralPubMedCrossRefGoogle Scholar
  32. Wang Y (2008) Development of acetic-acid tolerant Zymomonas mobilis strains through adaptation. Master Thesis: Georgia Institute of TechnologyGoogle Scholar
  33. Yamada T, Fatigati M, Zhang M (2002) Performance of Immobilized Zymomonas mobilis 31821 (pZB5) on Actual Hydrolysates Produced by Arkenol Technology. In: Finkelstein M, McMillan J, Davison B (eds) Biotechnology for fuels and chemicals. Applied biochemistry and biotechnology. Humana Press, Totowa, pp 899–907CrossRefGoogle Scholar
  34. Yang S, Land ML, Klingeman DM, Pelletier DA, Lu TY, Martin SL, Guo HB, Smith JC, Brown SD (2010a) Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 107(23):10395–10400PubMedCentralPubMedCrossRefGoogle Scholar
  35. Yang S, Pelletier DA, Lu TY, Brown SD (2010b) The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol 10:135PubMedCentralPubMedCrossRefGoogle Scholar
  36. Zhang Y, Ma R, Zhao Z, Zhou Z, Lu W, Zhang W, Chen M (2010) irrE, an exogenous gene from Deinococcus radiodurans, improves the growth of and ethanol production by a Zymomonas mobilis strain under ethanol and acid stress. J Microbiol Biotechnol 20(7):1156–1162PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zong-Xia Shui
    • 1
  • Han Qin
    • 1
  • Bo Wu
    • 1
  • Zhi-yong Ruan
    • 3
  • Lu-shang Wang
    • 4
  • Fu-Rong Tan
    • 1
  • Jing-Li Wang
    • 1
  • Xiao-Yu Tang
    • 1
  • Li-Chun Dai
    • 1
  • Guo-Quan Hu
    • 1
    • 2
  • Ming-Xiong He
    • 1
    • 2
  1. 1.Biogas Institute of Ministry of AgricultureBiomass Energy Technology Research CentreChengduPeople’s Republic of China
  2. 2.Key Laboratory of Development and Application of Rural Renewable EnergyMinistry of AgricultureChengduPeople’s Republic of China
  3. 3.Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  4. 4.State Key Laboratory of Microbial TechnologyShandong UniversityJinanPeople’s Republic of China

Personalised recommendations