Applied Microbiology and Biotechnology

, Volume 99, Issue 12, pp 5237–5246 | Cite as

A first continuous 4-aminoantipyrine (4-AAP)-based screening system for directed esterase evolution

  • Nina Lülsdorf
  • Ljubica Vojcic
  • Hendrik Hellmuth
  • Thomas T. Weber
  • Nina Mußmann
  • Ronny Martinez
  • Ulrich Schwaneberg
Methods and protocols

Abstract

Esterases hydrolyze ester bonds with an often high stereoselectivity as well as regioselectivity and are therefore industrially employed in the synthesis of pharmaceuticals, in food processing, and in laundry detergents. Continuous screening systems based on p-nitrophenyl- (e.g., p-nitrophenyl acetate) or umbelliferyl-esters are commonly used in directed esterase evolution campaigns. Ongoing challenges in directed esterase evolution are screening formats which offer a broad substrate spectrum, especially for complex aromatic substrates. In this report, a novel continuous high throughput screening system for indirect monitoring of esterolytic activity was developed and validated by detection of phenols employing phenyl benzoate as substrate and p-nitrobenzyl esterase (pNBEBL from Bacillus licheniformis) as catalyst. The released phenol directly reacts with 4-aminoantipyrine yielding the red compound 1,5-dimethyl-4-(4-oxo-cyclohexa-2,5-dienylidenamino)-2-phenyl-1,2-dihydro-pyrazol-3-one. In this continuous B. licheniformis esterase activity detection system (cBLE-4AAP), the product formation is followed through an increase in absorbance at 509 nm. The cBLE-4AAP screening system was optimized in 96-well microtiter plate format in respect to standard deviation (5 %), linear detection range (15 to 250 μM), lower detection limit (15 μM), and pH (7.4 to 10.4). The cBLE-4AAP screening system was validated by screening a random epPCR pNBEBL mutagenesis library (2000 clones) for improved esterase activity at elevated temperatures. Finally, the variant T3 (Ser378Pro) was identified which nearly retains its specific activity at room temperature (WT 1036 U/mg and T3 929 U/mg) and shows compared to WT a 4.7-fold improved residual activity after thermal treatment (30 min incubation at 69.4 °C; WT 170 U/mg to T3 804 U/mg).

Keywords

Directed evolution High-throughput screening Microtiter plate Esterase Thermal resistance 

Supplementary material

253_2015_6612_MOESM1_ESM.pdf (503 kb)
ESM 1(PDF 502 kb)

References

  1. Arnold FH, Moore JC (1997) Optimizing industrial enzymes by directed evolution. Adv Biochem Eng Biotechnol 58:1–14PubMedGoogle Scholar
  2. Blanusa M, Schenk A, Sadeghi H, Marienhagen J, Schwaneberg U (2010) Phosphorothioate-based ligase-independent gene cloning (PLICing): an enzyme-free and sequence-independent cloning method. Anal Biochem 406(2):141–146CrossRefPubMedGoogle Scholar
  3. Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26(1):73–81CrossRefPubMedGoogle Scholar
  4. Bornscheuer UT, Kazlauskas R (2005) Hydrolases in organic synthesis, regio- and stereoselective biotransformations, 2nd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  5. Breeuwer P, Drocourt JL, Bunschoten N, Zwietering MH, Rombouts FM, Abee T (1995) Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl Environ Microbiol 61(4):1614–1619PubMedCentralPubMedGoogle Scholar
  6. Cadwell RC, Joyce GF (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl 2(1):28–33CrossRefPubMedGoogle Scholar
  7. Chen YR, Usui S, Queener SW, Yu CA (1995) Purification and properties of ap-nitrobenzyl esterase from Bacillus subtilis. J Ind Microbiol 15(1):10–18CrossRefGoogle Scholar
  8. Choi YJ, Lee BH (2001) Culture conditions for the production of esterase from Lactobacillus casei CL96. Bioproc Biosyst Eng 24(1):59–63CrossRefGoogle Scholar
  9. Eggert T, Pencreac’h G, Douchet I, Verger R, Jaeger KE (2000) A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase. Eur J Biochem 267(21):6459–6469CrossRefPubMedGoogle Scholar
  10. Emerson E (1943) The condensation of aminoantipyrine: II A new color test for phenolic compounds. J Org Chem 8:417–428CrossRefGoogle Scholar
  11. Giuliani S, Piana C, Setti L, Hochkoeppler A, Pifferi PG, Williamson G, Faulds CB (2001) Synthesis of pentylferulate by a feruloyl esterase from Aspergillus niger using water-in-oil microemulsions. Biotechnol Lett 23(4):325–330CrossRefGoogle Scholar
  12. Giver L, Gershenson A, Freskgard PO, Arnold FH (1998) Directed evolution of a thermostable esterase. Proc Natl Acad Sci U S A 95(22):12809–12813CrossRefPubMedCentralPubMedGoogle Scholar
  13. Gregory MR (1983) Virgin plastic granules on some beaches of eastern Canada and bremuda. Mar Environ Res 10(2):73–92CrossRefGoogle Scholar
  14. Griswold KE (2003) Directed Enzyme Evolution—Screening and Selection Methods. In: Arnold FH, Georgiou G (eds) Methods in Molecular Biology. vol 230. Humana Press, pp 203–211Google Scholar
  15. Hartley BS, Kilby BA (1954) The reaction of p-nitrophenyl esters with chymotrypsin and insulin. Biochem J 56(2):288–297PubMedCentralPubMedGoogle Scholar
  16. Hsieh YL, Cram LA (1998) Enzymatic hydrolysis to improve wetting and absorbency of polyester fabrics. Text Res J 68(5):311–319CrossRefGoogle Scholar
  17. Ikeda M, Clark DS (1998) Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli. Biotechnol Bioeng 57(5):624–629CrossRefPubMedGoogle Scholar
  18. Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96(1):23–28CrossRefPubMedGoogle Scholar
  19. Jackson CJ, Liu JW, Carr PD, Younus F, Coppin C, Meirelles T, Lethier M, Pandey G, Ollis DL, Russell RJ, Weik M, Oakeshott JG (2013) Structure and function of an insect alpha-carboxylesterase (alphaEsterase7) associated with insecticide resistance. Proc Natl Acad Sci U S A 110(25):10177–10182CrossRefPubMedCentralPubMedGoogle Scholar
  20. Karpushova A, Brummer F, Barth S, Lange S, Schmid RD (2005) Cloning, recombinant expression and biochemical characterisation of novel esterases from Bacillus sp. associated with the marine sponge Aplysina aerophoba. Appl Microbiol Biotechnol 67(1):59–69CrossRefPubMedGoogle Scholar
  21. Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA–a self-parameterizing force field. Proteins Struct Funct Genet 47(3):393–402CrossRefPubMedGoogle Scholar
  22. Leemhuis H, Kelly RM, Dijkhuizen L (2009) Directed evolution of enzymes: library screening strategies. IUBMB Life 61(3):222–228CrossRefPubMedGoogle Scholar
  23. Lehmann C, Bocola M, Streit WR, Martinez R, Schwaneberg U (2014) Ionic liquid and deep eutectic solvent-activated CelA2 variants generated by directed evolution. Appl Microbiol Biotechnol 98(12):5775–5785CrossRefPubMedGoogle Scholar
  24. Leisewitz A (1997) Stoffströme wichtiger hormonell wirkender Substanzen. UBA-Projekt, Nr 10601076 Im Auftrag des UmweltbundesamtesGoogle Scholar
  25. Liu P, Ewis HE, Tai PC, Lu CD, Weber IT (2007) Crystal structure of the Geobacillus stearothermophilus carboxylesterase Est55 and its activation of prodrug CPT-11. J Mol Biol 367(1):212–223CrossRefPubMedCentralPubMedGoogle Scholar
  26. MacArthur MW, Thornton JM (1991) Influence of proline residues on protein conformation. J Mol Biol 218(2):397–412CrossRefPubMedGoogle Scholar
  27. Matthews BW, Nicholson H, Becktel WJ (1987) Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci U S A 84(19):6663–6667CrossRefPubMedCentralPubMedGoogle Scholar
  28. Meghji K, Ward OP, Araujo A (1990) Production, purification, and properties of extracellular carboxyl esterases from Bacillus subtilis NRRL 365. Appl Environ Microbiol 56(12):3735–3740PubMedCentralPubMedGoogle Scholar
  29. Menger FM, Ladika M (1987) Origin of rate accelerations in an enzyme model—the para-nitrophenyl ester syndrome. J Am Chem Soc 109(10):3145–3146CrossRefGoogle Scholar
  30. Moore JC, Arnold FH (1996) Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat Biotechnol 14(4):458–467CrossRefPubMedGoogle Scholar
  31. Oeser T, Wei R, Baumgarten T, Billig S, Follner C, Zimmermann W (2010) High level expression of a hydrophobic poly (ethylene terephthalate)-hydrolyzing carboxylesterase from Thermobifida fusca KW3 in Escherichia coli BL21(DE3). J Biotechnol 146(3):100–104CrossRefPubMedGoogle Scholar
  32. Panda T, Gowrishankar BS (2005) Production and applications of esterases. Appl Microbiol Biotechnol 67(2):160–169CrossRefPubMedGoogle Scholar
  33. Park JH, Meriwether BP, Clodfelder P, Cunningham LW (1961) The hydrolysis of p-nitrophenyl acetate catalyzed by 3-phosphoglyceraldehyde dehydrogenase. J Biol Chem 236:136–141PubMedGoogle Scholar
  34. Plou F, Ferrer M, Nuero O, Calvo M, Alcalde M, Reyes F, Ballesteros A (1998) Analysis of Tween 80 as an esterase/ lipase substrate for lipolytic activity assay. Biotechnol Tech 12(3):183–186CrossRefGoogle Scholar
  35. Rao L, Zhao X, Pan F, Li Y, Xue Y, Ma Y, Lu JR (2009) Solution behavior and activity of a halophilic esterase under high salt concentration. PLoS One 4(9):e6980CrossRefPubMedCentralPubMedGoogle Scholar
  36. Rao L, Xue Y, Zheng Y, Lu JR, Ma Y (2013) A novel alkaliphilic bacillus esterase belongs to the 13(th) bacterial lipolytic enzyme family. PLoS One 8(4):e60645CrossRefPubMedCentralPubMedGoogle Scholar
  37. Rhee JK, Ahn DG, Kim YG, Oh JW (2005) New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol 71(2):817–825CrossRefPubMedCentralPubMedGoogle Scholar
  38. Ribitsch D, Heumann S, Trotscha E, Herrero Acero E, Greimel K, Leber R, Birner-Gruenberger R, Deller S, Eiteljoerg I, Remler P, Weber T, Siegert P, Maurer KH, Donelli I, Freddi G, Schwab H, Guebitz GM (2011) Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis. Biotechnol Prog 27(4):951–960CrossRefPubMedGoogle Scholar
  39. Schmidt M, Henke E, Heinze B, Kourist R, Hidalgo A, Bornscheuer UT (2007) A versatile esterase from Bacillus subtilis: cloning, expression, characterization, and its application in biocatalysis. Biotechnol J 2(2):249–253CrossRefPubMedGoogle Scholar
  40. Schultheiss E, Paar C, Schwab H, Jose J (2002) Functional esterase surface display by the autotransporter pathway in Escherichia coli. J Mol Catal B: Enzym 18(1–3):89–97CrossRefGoogle Scholar
  41. Schwaneberg U, Schmidt-Dannert C, Schmitt J, Schmid RD (1999) A continuous spectrophotometric assay for P450 BM-3, a fatty acid hydroxylating enzyme, and its mutant F87A. Anal Biochem 269(2):359–366CrossRefPubMedGoogle Scholar
  42. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33(Web Server issue):W382–W388CrossRefPubMedCentralPubMedGoogle Scholar
  43. Shao W, Wiegel J (1995) Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol 61(2):729–733PubMedCentralPubMedGoogle Scholar
  44. Shi Y, Pan Y, Li B, He W, She Q, Chen L (2013) Molecular cloning of a novel bioH gene from an environmental metagenome encoding a carboxylesterase with exceptional tolerance to organic solvents. BMC Biotechnol 13:13CrossRefPubMedCentralPubMedGoogle Scholar
  45. Shivange AV, Dennig A, Schwaneberg U (2014) Multi-site saturation by OmniChange yields a pH- and thermally improved phytase. J Biotechnol 170:68–72CrossRefPubMedGoogle Scholar
  46. Spiller B, Gershenson A, Arnold FH, Stevens RC (1999) A structural view of evolutionary divergence. Proc Natl Acad Sci U S A 96(22):12305–12310CrossRefPubMedCentralPubMedGoogle Scholar
  47. Van Durme J, Delgado J, Stricher F, Serrano L, Schymkowitz J, Rousseau F (2011) A graphical interface for the FoldX forcefield. Bioinformatics 27(12):1711–1712CrossRefPubMedGoogle Scholar
  48. Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Baumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G (2004) The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7(4):204–211CrossRefPubMedGoogle Scholar
  49. Wang W, Malcolm BA (1999) Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. Biotechniques 26(4):680–682PubMedGoogle Scholar
  50. Wong TS, Wu N, Roccatano D, Zacharias M, Schwaneberg U (2005) Sensitive assay for laboratory evolution of hydroxylases toward aromatic and heterocyclic compounds. J Biomol Screen 10(3):246–252CrossRefPubMedGoogle Scholar
  51. Xin L, Hui-Ying Y (2013) Purification and characterization of an extracellular esterase with organic solvent tolerance from a halotolerant isolate, Salimicrobium sp. LY19. BMC Biotechnol 13:108CrossRefPubMedCentralPubMedGoogle Scholar
  52. Zhu LL, Tee KL, Roccatano D, Sonmez B, Ni Y, Sun ZH, Schwaneberg U (2010) Directed evolution of an antitumor drug (arginine deiminase PpADI) for increased activity at physiological pH. Chembiochem 11(5):691–697CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nina Lülsdorf
    • 1
  • Ljubica Vojcic
    • 2
  • Hendrik Hellmuth
    • 3
  • Thomas T. Weber
    • 3
  • Nina Mußmann
    • 3
  • Ronny Martinez
    • 2
    • 4
  • Ulrich Schwaneberg
    • 1
    • 2
  1. 1.DWI-Leibniz Institut für Interaktive MaterialienAachenGermany
  2. 2.Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachenGermany
  3. 3.International Research Laundry and Home CareBiotechnology, Henkel AG & Co. KGaADüsseldorfGermany
  4. 4.EW Nutrition GmbH, Enzyme TechnologyCologneGermany

Personalised recommendations