Applied Microbiology and Biotechnology

, Volume 99, Issue 18, pp 7589–7599 | Cite as

Development of a regulatable plasmid-based gene expression system for Clostridium thermocellum

  • Elizabeth B. Mearls
  • Daniel G. Olson
  • Christopher D. Herring
  • Lee R. Lynd
Applied genetics and molecular biotechnology


Clostridium thermocellum can rapidly solubilize cellulose and produces ethanol as an end product of its metabolism. As such, it is a candidate for bioethanol production from plant matter. In this study, we developed an inducible expression system for C. thermocellum based on its native celC operon. We enhanced expression over the native operon structure by placing the repressor gene, glyR3, immediately after the celC promoter, and expressing the target gene after glyR3. Upon the addition of the inducer substrate, laminaribiose, an approximately 40-fold increase in gene expression was obtained using the test gene spo0A. Furthermore, induction of the sporulation histidine kinase, clo1313_1942, increased sporulation frequency by approximately 10,000-fold relative to an uninduced control. We have also shown that the laminaribiose (β1-3-linked carbon source) utilization pathway is not catabolite repressed by cellobiose, a β1-4-linked carbon source frequently used for C. thermocellum cultivation in laboratory conditions. Selective expression of target genes has the potential to inform metabolic engineering strategies as well as increase fundamental understanding of C. thermocellum biology.


Laminaribiose Inducible promoter Biofuels Spore formation 



We would like to thank Dr. Adam Guss for his suggestions and input on the manuscript.

This research was supported by a grant from the BioEnergy Science Center (BESC), Oak Ridge National Laboratory, a US Department of Energy (DOE) BioEnergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Portions of this research were performed during an internship at the Mascoma Corporation. We would like to thank the Mascoma Corporation for their generous gift of strain M1726 and for their support during the duration of this work.


  1. Argyros D, Tripathi S, Barrett T, Rogers S, Feinberg L, Olson D, Foden J, Miller B, Lynd L, Hogsett D, Caiazza N (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77:8288–8294. doi: 10.1128/AEM.00646-11 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Banerjee A, Leang C, Ueki T, Nevin KP, Lovley DR (2014) Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl Environ Microbiol 80:2410–2416. doi: 10.1128/AEM.03666-13 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554. doi: 10.1146/annurev.micro.57.030502.091022 CrossRefPubMedGoogle Scholar
  4. Burkholder W, Grossman, AD (2000) Prokaryotic development. American Society of Microbiology, Washington, D.CGoogle Scholar
  5. Chung JD, Stephanopoulos G, Ireton K, Grossman AD (1994) Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. J Bacteriol 176:1977–1984PubMedCentralPubMedGoogle Scholar
  6. Dong H, Tao W, Zhang Y, Li Y (2012) Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: a useful tool for strain engineering. Metab Eng 14:59–67. doi: 10.1016/j.ymben.2011.10.004 CrossRefPubMedGoogle Scholar
  7. Dror TW, Rolider A, Bayer EA, Lamed R, Shoham Y (2003) Regulation of expression of scaffoldin-related genes in Clostridium thermocellum. J Bacteriol 185:5109–5116PubMedCentralCrossRefPubMedGoogle Scholar
  8. Elble R (1992) A simple and efficient procedure for transformation of yeasts. BioTechniques 13:18–20PubMedGoogle Scholar
  9. Ellis LD, Holwerda EK, Hogsett D, Rogers S, Shao X, Tschaplinski T, Thorne P, Lynd LR (2012) Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405). Bioresour Technol 103:293–299. doi: 10.1016/j.biortech.2011.09.128 CrossRefPubMedGoogle Scholar
  10. Eswaramoorthy P, Duan D, Dinh J, Dravis A, Devi SN, Fujita M (2010) The threshold level of the sensor histidine kinase KinA governs entry into sporulation in Bacillus subtilis. J Bacteriol 192:3870–3882. doi: 10.1128/JB.00466-10 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Fagan RP, Fairweather NF (2011) Clostridium difficile has two parallel and essential Sec secretion systems. J Biol Chem 286:27483–27493. doi: 10.1074/jbc.M111.263889 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Feinberg L, Foden J, Barrett T, Davenport KW, Bruce D, Detter C, Tapia R, Han C, Lapidus A, Lucas S, Cheng JF, Pitluck S, Woyke T, Ivanova N, Mikhailova N, Land M, Hauser L, Argyros DA, Goodwin L, Hogsett D, Caiazza N (2011) Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313. J Bacteriol 193:2906–2907. doi: 10.1128/JB.00322-11 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Fuchs KP, Zverlov VV, Velikodvorskaya GA, Lottspeich F, Schwarz WH (2003) Lic16A of Clostridium thermocellum, a non-cellulosomal, highly complex endo-beta-1,3-glucanase bound to the outer cell surface. Microbiology 149:1021–1031CrossRefPubMedGoogle Scholar
  14. Gruber DF, Pieribone VA, Porton B, Kao HT (2008) Strict regulation of gene expression from a high-copy plasmid utilizing a dual vector system. Protein Expr Purif 60:53–57. doi: 10.1016/j.pep.2008.03.014 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Guss AM, Olson DG, Caiazza NC, Lynd LR (2012) Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum. Biotechnol Biofuels 5:30. doi: 10.1186/1754-6834-5-30 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464. doi: 10.1016/j.mimet.2007.05.021 CrossRefPubMedGoogle Scholar
  17. Johnson EA, Sakajoh M, Halliwell G, Madia A, Demain AL (1982) Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl Environ Microbiol 43(5):1125–1132Google Scholar
  18. Li Y, Xu T, Tschaplinski TJ, Engle NL, Yang Y, Graham DE, He Z, Zhou J (2014) Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation. Biotechnol Biofuels 7:25. doi: 10.1186/1754-6834-7-25 PubMedCentralCrossRefPubMedGoogle Scholar
  19. Linville JL, Rodriguez L, Land M, Syed MH, Engle NL, Tschaplinski TJ, Mielenz JR, Cox CD (2013) Industrial robustness: understanding the mechanism of tolerance for the Populus hydrolysate-tolerant mutant strain of Clostridium thermocellum. PLoS One 8, e78829. doi: 10.1371/journal.pone.0078829 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25:1203–1210PubMedCentralCrossRefPubMedGoogle Scholar
  21. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577, table of contents PubMedCentralCrossRefPubMedGoogle Scholar
  22. McBee R (1950) The anaerobic thermophilic cellulolytic bacteria. Bacteriol Rev 14:51–63PubMedCentralPubMedGoogle Scholar
  23. Mearls EB, Lynd LR (2014) The identification of four histidine kinases that influence sporulation in Clostridium thermocellum. Anaerobe 28:109–119. doi: 10.1016/j.anaerobe.2014.06.004 CrossRefPubMedGoogle Scholar
  24. Mearls EB, Izquierdo JA, Lynd LR (2012) Formation and characterization of non-growth states in Clostridium thermocellum: spores and L-forms. BMC Microbiol 12:180. doi: 10.1186/1471-2180-12-180 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Mulller-Hill B (1996) The lac operon: a short history of a genetic paradigm. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  26. Mulller-Hill B, Crapo L, Gilbert W (1968) Mutants that make more lac repressor. Proc Natl Acad Sci U S A 59:1259–1264CrossRefGoogle Scholar
  27. Nariya H, Miyata S, Kuwahara T, Okabe A (2011) Development and characterization of a xylose-inducible gene expression system for Clostridium perfringens. Appl Environ Microbiol 77:8439–8441. doi: 10.1128/AEM.05668-11 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Nataf Y, Yaron S, Stahl F, Lamed R, Bayer EA, Scheper TH, Sonenshein AL, Shoham Y (2009) Cellodextrin and laminaribiose ABC transporters in Clostridium thermocellum. J Bacteriol 191:203–209. doi: 10.1128/JB.01190-08 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Newcomb M, Chen CY, Wu JH (2007) Induction of the celC operon of Clostridium thermocellum by laminaribiose. Proc Natl Acad Sci U S A 104:3747–3752. doi: 10.1073/pnas.0700087104 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Newcomb M, Millen J, Chen CY, Wu JH (2011) Co-transcription of the celC gene cluster in Clostridium thermocellum. Appl Microbiol Biotechnol 90:625–634. doi: 10.1007/s00253-011-3121-x CrossRefPubMedGoogle Scholar
  31. Newman JR, Fuqua C (1999) Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227:197–203CrossRefPubMedGoogle Scholar
  32. Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci U S A 43:553–556PubMedCentralCrossRefPubMedGoogle Scholar
  33. Olson DG, Lynd LR (2012) Transformation of Clostridium thermocellum by electroporation. Methods Enzymol 510:317–330. doi: 10.1016/B978-0-12-415931-0.00017-3 CrossRefPubMedGoogle Scholar
  34. Petre D, Millet J, Longin R, Beguin P, Girard H, Aubert JP (1986) Purification and properties of the endoglucanase C of Clostridium thermocellum produced in Escherichia coli. Biochimie 68:687–695CrossRefPubMedGoogle Scholar
  35. Qureshi N, Paterson AHJ, Maddox IS (1988) Model for continuous production of solvents from whey permeate in a packed bed reactor using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar. Appl Microbiol Biotechnol 29:323–328CrossRefGoogle Scholar
  36. Qureshi N, Lai LL, Blaschek HP (2004) Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beijerinckii. Food Bioprod Process 82:164–173CrossRefGoogle Scholar
  37. Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK, Lankford PK, Samatova NF, Mielenz JR (2009) Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 4, e5271. doi: 10.1371/journal.pone.0005271 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Riederer A, Takasuka TE, Makino S, Stevenson DM, Bukhman YV, Elsen NL, Fox BG (2011) Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. Appl Environ Microbiol 77:1243–1253. doi: 10.1128/AEM.02008-10 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Schwarz WH, Grabnitz F, Staudenbauer WL (1986) Properties of a Clostridium thermocellum endoglucanase produced in Escherichia coli. Appl Environ Microbiol 51:1293–1299PubMedCentralPubMedGoogle Scholar
  40. Schwarz WH, Schimming S, Rucknagel KP, Burgschwaiger S, Kreil G, Staudenbauer WL (1988) Nucleotide sequence of the celC gene encoding endoglucanase C of Clostridium thermocellum. Gene 63:23–30CrossRefPubMedGoogle Scholar
  41. Shanks RM, Caiazza NC, Hinsa SM, Toutain CM, O'Toole GA (2006) Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol 72:5027–5036. doi: 10.1128/AEM.00682-06 PubMedCentralCrossRefPubMedGoogle Scholar
  42. Shanks RM, Kadouri DE, MacEachran DP, O'Toole GA (2009) New yeast recombineering tools for bacteria. Plasmid 62:88–97. doi: 10.1016/j.plasmid.2009.05.002 PubMedCentralCrossRefPubMedGoogle Scholar
  43. Siegele DA, Hu JC (1997) Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc Natl Acad Sci U S A 94:8168–8172PubMedCentralCrossRefPubMedGoogle Scholar
  44. Skerra A (1994) Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151:131–135CrossRefPubMedGoogle Scholar
  45. Steiner E, Dago AE, Young DI, Heap JT, Minton NP, Hoch JA, Young M (2011) Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum. Mol Microbiol 80:641–654. doi: 10.1111/j.1365-2958.2011.07608.x PubMedCentralCrossRefPubMedGoogle Scholar
  46. Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA, Caiazza NC (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76:6591–6599. doi: 10.1128/AEM.01484-10 PubMedCentralCrossRefPubMedGoogle Scholar
  47. Underwood S, Guan S, Vijayasubhash V, Baines SD, Graham L, Lewis RJ, Wilcox MH, Stephenson K (2009) Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. J Bacteriol 191:7296–7305. doi: 10.1128/JB.00882-09 PubMedCentralCrossRefPubMedGoogle Scholar
  48. Yansura D, Henner D (1984) Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proc Natl Acad Sci U S A 81:439–443PubMedCentralCrossRefPubMedGoogle Scholar
  49. Zhang YH, Lynd LR (2005) Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J Bacteriol 187:99–106. doi: 10.1128/JB.187.1.99-106.2005 PubMedCentralCrossRefPubMedGoogle Scholar
  50. Zhang J, Liu Y, Cui GX, Cui Q (2015) A novel arabinose-inducible genetic operation system developed for Clostridium cellulolyticum. Biotechnol Biofuels 8:36PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2015

Authors and Affiliations

  • Elizabeth B. Mearls
    • 1
    • 2
    • 4
  • Daniel G. Olson
    • 1
    • 2
  • Christopher D. Herring
    • 1
    • 3
  • Lee R. Lynd
    • 1
    • 2
  1. 1.Thayer School of EngineeringDartmouth CollegeHanoverUSA
  2. 2.BioEnergy Science CenterOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Mascoma CorporationLebanonUSA
  4. 4.Department of Biological SciencesMount Holyoke CollegeSouth HadleyUSA

Personalised recommendations