Applied Microbiology and Biotechnology

, Volume 99, Issue 16, pp 6765–6774 | Cite as

Expression of enterovirus 71 virus-like particles in transgenic enoki (Flammulina velutipes)

  • Yu-Ju Lin
  • Wen-Ti Liu
  • Holger StarkEmail author
  • Ching-Tsan HuangEmail author
Applied genetics and molecular biotechnology


No commercial vaccines are currently available for enterovirus 71 (EV71) infection. Oral virus-like particle (VLP) vaccines are regarded as a better choice for prevention from food-borne diseases compared with injected whole virus vaccines. Unfortunately, the application of oral VLP vaccines produced from transgenic plants was limited due to the concerns of gene contamination. Alternatively, using transgenic mushrooms retains the advantages of transgenic plants and tremendously reduce risks of gene contamination. Polycistronic expression vectors harboring the glyceraldehyde-3-phospho-dehydrogenase promoter to codrive EV71 structural protein P1 and protease 3C using the 2A peptide of porcine teschovirus-1 were constructed and introduced into Flammulina velutipes via Agrobacterium tumefaciens-mediated transformation. The analyses of the genomic PCR, Southern blotting, and RT-PCR showed that the genes of P1 and 3C were integrated into the chromosomal DNA through a single insertion, and their resulting mRNAs were transcribed. The Western blotting analysis combined with LC-MS/MS demonstrated that EV71 VLPs were composed of the four subunit proteins digested from P1 polyprotein by 3C protease. Through the use of a single particle electron microscope, images of 1705 particles with diameter similar to the EV71 viron were used for 3D reconstruction. Protrusions were observed on the surface in the 2D class averages, and a 3D reconstruction of the VLPs was obtained. In conclusion, EV71 VLPs were successfully produced in transgenic F. velutipes using a polycistronic expression strategy, which indicates that this approach is promising for the development of oral vaccines produced in mushrooms.


Flammulina velutipes Agrobacterium tumefaciens-mediated transformation 2A peptides Polycistron Enterovirus 71 



We are grateful to TechComm (College of Life Science, National Taiwan University) for LC-MS/MS technical assistance. The financial support of the National Science Council of the ROC (Grant No. NSC102-2313-B-002-059) is greatly appreciated.


  1. An J, Mo D, Liu H, Veena MS, Srivatsan ES, Massoumi R, Rettig MB (2008) Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia-induced NF-kappaB activation. Cancer Cell 14(5):394–407. doi: 10.1016/j.ccr.2008.10.007 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bellier B, Klatzmann D (2013) Virus-like particle-based vaccines against hepatitis C virus infection. Expert Rev Vaccines 12(2):143–154. doi: 10.1586/erv.13.10 PubMedCrossRefGoogle Scholar
  3. Berends E, Ohm RA, de Jong JF, Rouwendal G, Wosten HA, Lugones LG, Bosch D (2009) Genomic and biochemical analysis of N glycosylation in the mushroom-forming basidiomycete Schizophyllum commune. Appl Environ Microbiol 75(13):4648–4652. doi: 10.1128/AEM.00352-09 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Catanese MT, Uryu K, Kopp M, Edwards TJ, Andrus L, Rice WJ, Silvestry M, Kuhn RJ, Rice CM (2013) Ultrastructural analysis of hepatitis C virus particles. Proc Natl Acad Sci U S A 110(23):9505–9510. doi: 10.1073/pnas.1307527110 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Chen X, Stone M, Schlagnhaufer C, Romaine CP (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 66(10):4510–4513PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chen HF, Chang MH, Chiang BL, Jeng ST (2006) Oral immunization of mice using transgenic tomato fruit expressing VP1 protein from enterovirus 71. Vaccine 24(15):2944–2951. doi: 10.1016/j.vaccine.2005.12.047 PubMedCrossRefGoogle Scholar
  7. Chen HL, Huang JY, Chu TW, Tsai TC, Hung CM, Lin CC, Liu FC, Wang LC, Chen YJ, Lin MF, Chen CM (2008) Expression of VP1 protein in the milk of transgenic mice: a potential oral vaccine protects against enterovirus 71 infection. Vaccine 26(23):2882–2889. doi: 10.1016/j.vaccine.2008.03.041 PubMedCrossRefGoogle Scholar
  8. Chen SC, Chang LY, Wang YW, Chen YC, Weng KF, Shih SR, Shih HM (2011) Sumoylation-promoted enterovirus 71 3C degradation correlates with a reduction in viral replication and cell apoptosis. J Biol Chem 286(36):31373–31384. doi: 10.1074/jbc.M111.254896 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chung YC, Huang JH, Lai CW, Sheng HC, Shih SR, Ho MS, Hu YC (2006) Expression, purification and characterization of enterovirus-71 virus-like particles. World J Gastroenterol 12(6):921–927PubMedCentralPubMedGoogle Scholar
  10. Chung YC, Ho MS, Wu JC, Chen WJ, Huang JH, Chou ST, Hu YC (2008) Immunization with virus-like particles of enterovirus 71 elicits potent immune responses and protects mice against lethal challenge. Vaccine 26(15):1855–1862. doi: 10.1016/j.vaccine.2008.01.058 PubMedCrossRefGoogle Scholar
  11. Chung CY, Chen CY, Lin SY, Chung YC, Chiu HY, Chi WK, Lin YL, Chiang BL, Chen WJ, Hu YC (2010) Enterovirus 71 virus-like particle vaccine: improved production conditions for enhanced yield. Vaccine 28(43):6951–6957. doi: 10.1016/j.vaccine.2010.08.052 PubMedCrossRefGoogle Scholar
  12. de Felipe P (2004) Skipping the co-expression problem: the new 2A "CHYSEL" technology. Genet Vaccines Ther 2(1):13. doi: 10.1186/1479-0556-2-13 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Donnelly ML, Hughes LE, Luke G, Mendoza H, ten Dam E, Gani D, Ryan MD (2001) The 'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring '2A-like' sequences. J Gen Virol 82(Pt 5):1027–1041PubMedGoogle Scholar
  14. Dube P, Tavares P, Lurz R, van Heel M (1993) The portal protein of bacteriophage SPP1: a DNA pump with 13-fold symmetry. EMBO J 12(4):1303–1309PubMedCentralPubMedGoogle Scholar
  15. El Enshasy HA, Hatti-Kaul R (2013) Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol 31(12):668–677. doi: 10.1016/j.tibtech.2013.09.003 PubMedCrossRefGoogle Scholar
  16. Foo DG, Alonso S, Phoon MC, Ramachandran NP, Chow VT, Poh CL (2007) Identification of neutralizing linear epitopes from the VP1 capsid protein of Enterovirus 71 using synthetic peptides. Virus Res 125(1):61–68. doi: 10.1016/j.virusres.2006.12.005 PubMedCrossRefGoogle Scholar
  17. Freivalds J, Dislers A, Ose V, Pumpens P, Tars K, Kazaks A (2011) Highly efficient production of phosphorylated hepatitis B core particles in yeast Pichia pastoris. Protein Expr Purif 75(2):218–224. doi: 10.1016/j.pep.2010.09.010 PubMedCrossRefGoogle Scholar
  18. Hagiwara A, Tagaya I, Yoneyama T (1978) Epidemic of hand, foot and mouth disease associated with enterovirus 71 infection. Intervirology 9(1):60–63PubMedCrossRefGoogle Scholar
  19. Hendry E, Hatanaka H, Fry E, Smyth M, Tate J, Stanway G, Santti J, Maaronen M, Hyypia T, Stuart D (1999) The crystal structure of coxsackievirus A9: new insights into the uncoating mechanisms of enteroviruses. Structure 7(12):1527–1538PubMedCrossRefGoogle Scholar
  20. Hu YC, Hsu JT, Huang JH, Ho MS, Ho YC (2003) Formation of enterovirus-like particle aggregates by recombinant baculoviruses co-expressing P1 and 3CD in insect cells. Biotechnol Lett 25(12):919–925PubMedCrossRefGoogle Scholar
  21. Kanesashi SN, Ishizu K, Kawano MA, Han SI, Tomita S, Watanabe H, Kataoka K, Handa H (2003) Simian virus 40 VP1 capsid protein forms polymorphic assemblies in vitro. J Gen Virol 84(Pt 7):1899–1905PubMedCrossRefGoogle Scholar
  22. Kastner B, Fischer N, Golas MM, Sander B, Dube P, Boehringer D, Hartmuth K, Deckert J, Hauer F, Wolf E, Uchtenhagen H, Urlaub H, Herzog F, Peters JM, Poerschke D, Luhrmann R, Stark H (2008) GraFix: sample preparation for single-particle electron cryomicroscopy. Nat Methods 5(1):53–55. doi: 10.1038/nmeth1139 PubMedCrossRefGoogle Scholar
  23. Kuo CY, Chou SY, Huang CT (2004) Cloning of glyceraldehyde-3-phosphate dehydrogenase gene and use of the gpd promoter for transformation in Flammulina velutipes. Appl Microbiol Biotechnol 65(5):593–599. doi: 10.1007/s00253-004-1635-1 PubMedGoogle Scholar
  24. Li H-Y, Han J-F, Qin C-F, Chen R (2013a) Virus-like particles for enterovirus 71 produced from Saccharomyces cerevisiae potently elicits protective immune responses in mice. Vaccine 31(32):3281–3287. doi: 10.1016/j.vaccine.2013.05.019 PubMedCrossRefGoogle Scholar
  25. Li X, Xu X, Jin A, Jia Q, Zhou H, Kang S, Lou Y, Gao J, Lu J (2013b) Self-assembled HCV core virus-like particles targeted and inhibited tumor cell migration and invasion. Nanoscale Res Lett 8(1):401. doi: 10.1186/1556-276X-8-401 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Liljas L (1999) Virus assembly. Curr Opin Struct Biol 9(1):129–134PubMedCrossRefGoogle Scholar
  27. Lin YL, Yu CI, Hu YC, Tsai TJ, Kuo YC, Chi WK, Lin AN, Chiang BL (2012) Enterovirus type 71 neutralizing antibodies in the serum of macaque monkeys immunized with EV71 virus-like particles. Vaccine 30(7):1305–1312. doi: 10.1016/j.vaccine.2011.12.081 PubMedCrossRefGoogle Scholar
  28. Lin YJ, Huang LH, Huang CT (2013) Enhancement of heterologous gene expression in Flammulina velutipes using polycistronic vectors containing a viral 2A cleavage sequence. PLoS One 8(3), e59099. doi: 10.1371/journal.pone.0059099 PubMedCentralPubMedCrossRefGoogle Scholar
  29. McMinn PC (2002) An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev 26(1):91–107PubMedCrossRefGoogle Scholar
  30. Ong KC, Devi S, Cardosa MJ, Wong KT (2010) Formaldehyde-inactivated whole-virus vaccine protects a murine model of enterovirus 71 encephalomyelitis against disease. J Virol 84(1):661–665. doi: 10.1128/JVI.00999-09 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Palucha A, Loniewska A, Satheshkumar S, Boguszewska-Chachulska AM, Umashankar M, Milner M, Haenni AL, Savithri HS (2005) Virus-like particles: models for assembly studies and foreign epitope carriers. Prog Nucleic Acid Res Mol Biol 80:135–168. doi: 10.1016/S0079-6603(05)80004-2 PubMedCrossRefGoogle Scholar
  32. Park J-S, Seo H-S, Yum J-S, Moon HM, Lee J (2005) The influence of N-glycosylation and C-terminal sequence on secretion of HBV large surface antigen from S. cerevisiae. Biotechnol Bioeng 92(2):250–255. doi: 10.1002/bit.20640 PubMedCrossRefGoogle Scholar
  33. Schmidt NJ, Lennette EH, Ho HH (1974) An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis 129(3):304–309PubMedCrossRefGoogle Scholar
  34. Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH (2010) Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 10(11):778–790. doi: 10.1016/S1473-3099(10)70194-8 PubMedCrossRefGoogle Scholar
  35. Souza AC, Vasques RM, Inoue-Nagata AK, Lacorte C, Maldaner FR, Noronha EF, Nagata T (2013) Expression and assembly of Norwalk virus-like particles in plants using a viral RNA silencing suppressor gene. Appl Microbiol Biotechnol 97(20):9021–9027. doi: 10.1007/s00253-013-5077-5 PubMedCrossRefGoogle Scholar
  36. Specht EA, Mayfield SP (2014) Algae-based oral recombinant vaccines. Front Microbiol 5. doi: 10.3389/fmicb.2014.00060
  37. Taghavian O, Spiegel H, Hauck R, Hafez HM, Fischer R, Schillberg S (2013) Protective oral vaccination against infectious bursal disease virus using the major viral antigenic protein VP2 produced in Pichia pastoris. PLoS One 8(12), e83210. doi: 10.1371/journal.pone.0083210 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Tiwari S, Verma PC, Singh PK, Tuli R (2009) Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 27(4):449–467. doi: 10.1016/j.biotechadv.2009.03.006 PubMedCrossRefGoogle Scholar
  39. Tung WS, Bakar SA, Sekawi Z, Rosli R (2007) DNA vaccine constructs against enterovirus 71 elicit immune response in mice. Genet Vaccines Ther 5:6. doi: 10.1186/1479-0556-5-6 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Van Heel M (1987) Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21(2):111–123PubMedCrossRefGoogle Scholar
  41. Wu CN, Lin YC, Fann C, Liao NS, Shih SR, Ho MS (2001) Protection against lethal enterovirus 71 infection in newborn mice by passive immunization with subunit VP1 vaccines and inactivated virus. Vaccine 20(5-6):895–904PubMedCrossRefGoogle Scholar
  42. Yin H, Wang Y, Wang Y, Chen T, Tang H, Wang M (2010) Purification, characterization and immuno-modulating properties of polysaccharides isolated from Flammulina velutipes mycelium. Am J Chin Med 38(1):191–204. doi: 10.1142/S0192415X10007750 PubMedCrossRefGoogle Scholar
  43. Zhang D, Lu J (2010) Enterovirus 71 vaccine: close but still far. Int J Infect Dis 14(9):e739–e743. doi: 10.1016/j.ijid.2009.12.002 PubMedCrossRefGoogle Scholar
  44. Zhang BZ, Inngjerdingen KT, Zou YF, Rise F, Michaelsen TE, Yan PS, Paulsen BS (2014) Characterisation and immunomodulating activities of exo-polysaccharides from submerged cultivation of Hypsizigus marmoreus. Food Chem 163:120–128. doi: 10.1016/j.foodchem.2014.04.092 PubMedCrossRefGoogle Scholar
  45. Zlotnick A, Aldrich R, Johnson JM, Ceres P, Young MJ (2000) Mechanism of capsid assembly for an icosahedral plant virus. Virology 277(2):450–456. doi: 10.1006/viro.2000.0619 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Biochemical Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
  2. 2.Max Planck Institute for Biophysical ChemistryGoettingenGermany

Personalised recommendations