Applied Microbiology and Biotechnology

, Volume 99, Issue 16, pp 6831–6840 | Cite as

Self-organised nanoarchitecture of titanium surfaces influences the attachment of Staphylococcus aureus and Pseudomonas aeruginosa bacteria

  • Vi Khanh Truong
  • Vy T. H. Pham
  • Alexander Medvedev
  • Rimma Lapovok
  • Yuri Estrin
  • Terry C. Lowe
  • Vladimir Baulin
  • Veselin Boshkovikj
  • Christopher J. Fluke
  • Russell J. Crawford
  • Elena P. Ivanova
Applied microbial and cell physiology

Abstract

The surface nanotopography and architecture of medical implant devices are important factors that can control the extent of bacterial attachment. The ability to prevent bacterial attachment substantially reduces the possibility of a patient receiving an implant contracting an implant-borne infection. We now demonstrated that two bacterial strains, Staphylococcus aureus and Pseudomonas aeruginosa, exhibited different attachment affinities towards two types of molecularly smooth titanium surfaces each possessing a different nanoarchitecture. It was found that the attachment of S. aureus cells was not restricted on surfaces that had an average roughness (Sa) less than 0.5 nm. In contrast, P. aeruginosa cells were found to be unable to colonise surfaces possessing an average roughness below 1 nm, unless sharp nanoprotrusions of approximately 20 nm in size and spaced 35.0 nm apart were present. It is postulated that the enhanced attachment of P. aeruginosa onto the surfaces possessing these nanoprotrusions was facilitated by the ability of the cell membrane to stretch over the tips of the nanoprotrusions as confirmed through computer simulation, together with a concomitant increase in the level of extracellular polymeric substance (EPS) being produced by the bacterial cells.

Keywords

Bacterial attachment Surface nanoarchitecture Molecularly smooth surfaces Staphylococcus aureus Pseudomonas aeruginosa 

Supplementary material

253_2015_6572_MOESM1_ESM.pdf (1.3 mb)
ESM 1(PDF 1375 kb)

References

  1. Aicheler M, Sgobba S, Arnau-Izquierdo G, Taborelli M, Calatroni S, Neupert H, Wuensch W (2011) Evolution of surface topography in dependence on the grain orientation during surface thermal fatigue of polycrystalline copper. Int J Fatigue 33(3):396–402CrossRefGoogle Scholar
  2. An YH, Friedman RJ, Draughn RA, Smith EA, Nicholson JH, John JF (1995) Rapid quantification of staphylococci adhered to titanium surfaces using image analyzed epifluorescence microscopy. J Microbiol Methods 24(1):29–40CrossRefGoogle Scholar
  3. Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6(10):3824–3846PubMedCrossRefGoogle Scholar
  4. Assender H, Bliznyuk V, Porfyrakis K (2002) How surface topography relates to materials’ properties. Science 297(5583):973–976PubMedCrossRefGoogle Scholar
  5. Bos R, Van Der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol Rev 23(2):179–229PubMedCrossRefGoogle Scholar
  6. Boulangé-Petermann L, Rault J, Bellon-Fontaine MN (1997) Adhesion of Streptococcus thermophilus to stainless steel with different surface topography and roughness. Biofouling 11(3):201–216CrossRefGoogle Scholar
  7. Chai L, Klein J (2007) Large area, molecularly smooth (0.2 nm rms) gold films for surface forces and other studies. Langmuir 23(14):7777–7783PubMedCrossRefGoogle Scholar
  8. Colon G, Ward BC, Webster TJ (2006) Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J Biomed Mater Res A 78:595–604PubMedCrossRefGoogle Scholar
  9. Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP (2012) Surface topographical factors influencing bacterial attachment. Adv Colloid Interf Sci 179–182:142–149CrossRefGoogle Scholar
  10. Decuzzi P, Ferrari M (2010) Modulating cellular adhesion through nanotopography. Biomaterials 31(1):173–179PubMedCrossRefGoogle Scholar
  11. Díaz C, Schilardi PL, Salvarezza RC, De Mele MFL (2007) Nano/microscale order affects the early stages of biofilm formation on metal surfaces. Langmuir 23(22):11206–11210PubMedCrossRefGoogle Scholar
  12. Fadeeva E, Truong VK, Stiesch M, Chichkov BN, Crawford RJ, Wang J, Ivanova EP (2011) Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir 27(6):3012–3019PubMedCrossRefGoogle Scholar
  13. Gentile F, Tirinato L, Battista E, Causa F, Liberale C, di Fabrizio EM, Decuzzi P (2010) Cells preferentially grow on rough substrates. Biomaterials 31(28):7205–7212PubMedCrossRefGoogle Scholar
  14. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146(10):2395–2407PubMedGoogle Scholar
  15. Irie Y, Borlee BR, O'Connor JR, Hill PJ, Harwood CS, Wozniak DJ, Parsek MR (2012) Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 109(50):20632–20636PubMedCentralPubMedCrossRefGoogle Scholar
  16. Ivanova EP, Pham DK, Wright JP, Nicolau DV (2002) Detection of coccoid forms of Sulfitobacter mediterraneus using atomic force microscopy. FEMS Microbiol Lett 214(2):177–181PubMedCrossRefGoogle Scholar
  17. Ivanova EP, Mitik-Dineva N, Wang J, Pham DK, Wright JP, Nicolau DV, Mocanasu RC, Crawford RJ (2008) Staleya guttiformis attachment on poly(tert-butylmethacrylate) polymeric surfaces. Micron 39(8):1197–1204PubMedCrossRefGoogle Scholar
  18. Ivanova EP, Truong VK, Wang J, Berndt CC, Jones TR, Yusuf II, Peake I, Schmidt HW, Fluke C, Barnes D, Crawford RJ (2010) Impact of nanoscale roughness of titanium thin films surfaces on bacterial retention. Langmuir 26(3):1973–1982PubMedCrossRefGoogle Scholar
  19. Ivanova EP, Truong VK, Webb HK, Baulin VA, Wang JY, Mohammodi N, Wang F, Fluke C, Crawford RJ (2011) Differential attraction and repulsion of Staphylococcus aureus and Pseudomonas aeruginosa on molecularly smooth titanium films. Sci Rep 1:165PubMedCentralPubMedCrossRefGoogle Scholar
  20. Li B, Logan BE (2004) Bacterial adhesion to glass and metal-oxide surfaces. Colloid Surf B 36(2):81–90CrossRefGoogle Scholar
  21. Medilanski E, Kaufmann K, Wick LY, Wanner O, Harms H (2002) Influence of the surface topography of stainless steel on bacterial adhesion. Biofouling 18(3):193–203CrossRefGoogle Scholar
  22. Misra G, Rojas ER, Gopinathan A, Huang KC (2013a) Mechanical consequences of cell-wall turnover in the elongation of a gram-positive bacterium. Biophys J 104(11):2342–2352PubMedCentralPubMedCrossRefGoogle Scholar
  23. Misra RDK, Nune C, Pesacreta TC, Somani MC, Karjalainen LP (2013b) Understanding the impact of grain structure in austenitic stainless steel from a nanograined regime to a coarse-grained regime on osteoblast functions using a novel metal deformation-annealing sequence. Acta Biomater 9(4):6245–6258PubMedCrossRefGoogle Scholar
  24. Mitik-Dineva N, Wang J, Truong VK, Stoddart P, Malherbe F, Crawford RJ, Ivanova EP (2009) Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Curr Microbiol 58(3):268–273PubMedCrossRefGoogle Scholar
  25. Park MR, Banks MK, Applegate B, Webster TJ (2008) Influence of nanophase titania topography on bacterial attachment and metabolism. Int J Nanomedicine 3(4):497–504PubMedCentralPubMedGoogle Scholar
  26. Peltonen J, Järn M, Areva S, Linden M, Rosenholm JB (2004) Topographical parameters for specifying a three-dimensional surface. Langmuir 20(22):9428–9431PubMedCrossRefGoogle Scholar
  27. Ploux L, Anselme K, Dirani A, Ponche A, Soppera O, Roucoules V (2009) Opposite responses of cells and bacteria to micro/nanopatterned surfaces prepared by pulsed plasma polymerization and UV-irradiation. Langmuir 25(14):8161–8169PubMedCrossRefGoogle Scholar
  28. Ploux L, Ponche A, Anselme K (2010) Bacteria/material interfaces: role of the material and cell wall properties. J Adhes Sci Technol 24(13-14):2165–2201CrossRefGoogle Scholar
  29. Pogodin S, Hasan J, Baulin VA, Webb HK, Truong VK, Phong Nguyen TH, Boshkovikj V, Fluke CJ, Watson GS, Watson JA, Crawford RJ, Ivanova EP (2013) Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J 104(4):835–840PubMedCentralPubMedCrossRefGoogle Scholar
  30. Puckett SD, Taylor E, Raimondo T, Webster TJ (2010) The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31(4):706–713PubMedCrossRefGoogle Scholar
  31. Rowan B, Wheeler MA, Crooks RM (2002) Patterning bacteria within hyperbranched polymer film templates. Langmuir 18(25):9914–9917CrossRefGoogle Scholar
  32. Rozhok S, Fan Z, Nyamjav D, Liu C, Mirkin CA, Holz RC (2006) Attachment of motile bacterial cells to prealigned holed microarrays. Langmuir 22(26):11251–11254PubMedCrossRefGoogle Scholar
  33. Ryder C, Byrd M, Wozniak DJ (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10(6):644–648PubMedCentralPubMedCrossRefGoogle Scholar
  34. Scardino AJ, Guenther J, de Nys R (2008) Attachment point theory revisited: the fouling response to a microtextured matrix. Biofouling 24(1):45–53PubMedCrossRefGoogle Scholar
  35. Siegismund D, Undisz A, Germerodt S, Schuster S, Rettenmayr M (2014) Quantification of the interaction between biomaterial surfaces and bacteria by 3-D modeling. Acta Biomater 10(1):267–275PubMedCrossRefGoogle Scholar
  36. Tay CY, Irvine SA, Boey FYC, Tan LP, Venkatraman S (2011) Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications. Small 7(10):1361–1378PubMedCrossRefGoogle Scholar
  37. Teughels W, Van Assche N, Sliepen I, Quirynen M (2006) Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 17(SUPPL 2):68–81PubMedCrossRefGoogle Scholar
  38. Torres AJ, Wu M, Holowka D, Baird B (2008) Nanobiotechnology and cell biology: micro- and nanofabricated surfaces to investigate receptor-mediated signaling. Annu Rev Biophys 37:265–288PubMedCrossRefGoogle Scholar
  39. Truong VK, Lapovok R, Estrin YS, Rundell S, Wang JY, Fluke CJ, Crawford RJ, Ivanova EP (2010) The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 31(13):3674–3683PubMedCrossRefGoogle Scholar
  40. Wang Y, Song R, Li Y, Shen J (2003) Understanding tapping-mode atomic force microscopy data on the surface of soft block copolymers. Surf Sci 530(3):136–148CrossRefGoogle Scholar
  41. Webb HK, Crawford RJ, Sawabe T, Ivanova EP (2009) Poly(ethylene terephthalate) polymer surfaces as a substrate for bacterial attachment and biofilm formation. Microbes Environ 24(1):39–42PubMedCrossRefGoogle Scholar
  42. Webb HK, Truong VK, Hasan J, Crawford RJ, Ivanova EP (2011) Physico-mechanical characterisation of cells using atomic force microscopy—current research and methodologies. J Microbiol Methods 86(2):131–139PubMedCrossRefGoogle Scholar
  43. Webb HK, Boshkovikj V, Fluke CJ, Truong VK, Hasan J, Baulin VA, Lapovok R, Estrin Y, Crawford RJ, Ivanova EP (2013) Bacterial attachment on sub-nanometrically smooth titanium substrata. Biofouling 29(2):163–170PubMedCrossRefGoogle Scholar
  44. Whitehead KA, Colligon J, Verran J (2005) Retention of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions. Colloid Surf B 41(2-3):129–138CrossRefGoogle Scholar
  45. Whitehead KA, Rogers D, Colligon J, Wright C, Verran J (2006) Use of the atomic force microscope to determine the effect of substratum surface topography on the ease of bacterial removal. Colloid Surf B 51(1):44–53CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vi Khanh Truong
    • 1
  • Vy T. H. Pham
    • 1
  • Alexander Medvedev
    • 2
  • Rimma Lapovok
    • 2
  • Yuri Estrin
    • 2
  • Terry C. Lowe
    • 4
  • Vladimir Baulin
    • 5
  • Veselin Boshkovikj
    • 1
  • Christopher J. Fluke
    • 3
  • Russell J. Crawford
    • 1
  • Elena P. Ivanova
    • 1
  1. 1.School of Science, Faculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornAustralia
  2. 2.Centre for Advanced Hybrid Materials, Department of Materials EngineeringMonash UniversityClaytonAustralia
  3. 3.Centre for Astrophysics and Supercomputing, Faculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornAustralia
  4. 4.Department of Metallurgical and Materials EngineeringColorado School of MinesGoldenUSA
  5. 5.Departament d’Enginyeria QuimicaUniversitat Rovirai VirgiliTarragonaSpain

Personalised recommendations