Applied Microbiology and Biotechnology

, Volume 99, Issue 16, pp 6813–6829 | Cite as

Evidence for cholesterol-lowering activity by Bifidobacterium bifidum PRL2010 through gut microbiota modulation

  • Ilaria Zanotti
  • Francesca TurroniEmail author
  • Antonio Piemontese
  • Leonardo Mancabelli
  • Christian Milani
  • Alice Viappiani
  • Gilda Prevedini
  • Borja Sanchez
  • Abelardo Margolles
  • Lisa Elviri
  • Bernini Franco
  • Douwe van Sinderen
  • Marco Ventura
Applied microbial and cell physiology


Bifidobacteria are members of the human gut microbiota, which are known to influence the metabolic abilities of their host. Here, we investigated the capabilities of bifidobacteria to reduce cholesterol levels in synthetic growth media, clearly demonstrating assimilation of this molecule by particular bifidobacterial strains, including Bifidobacterium bifidum PRL2010 (LMG S-28692). The transcriptomic analysis of PRL2010 cells cultivated in the presence of cholesterol revealed a significantly increased transcription level of genes encoding putative transporters and reductases, indicative of specific mechanisms for cholesterol assimilation as well as cholesterol conversion to coprostanol. Cholesterol lowering activity of B. bifidum PRL2010 cells was further evaluated by means of an in vivo murine model, showing that the fecal microbiota of mice is modified toward those bacteria involved in the metabolism of cholesterol.


Bifidobacterium Cholesterol Gut microbiota Functional genomics 



We thank GenProbio srl for financial support of the Laboratory of Probiogenomics. This work was financially supported by a FEMS Jensen Award to FT. FT is a members of The Alimentary Pharmabiotic Centre, while DvS is also a member of the Alimentary Glycoscience Research Cluster, both funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan (Grant numbers SFI/12/RC/2273 and 08/SRC/B1393, respectively).

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Compliance with the ethical standards

The authors declare that all the procedures used for murine experiments (housing and experiments) were conducted in accordance with the animal experimentation European Communities Council Directive of 24 November 1986 (86/EEC) and approved by the ethical commission of the University of Parma and by the Italian Institute of Health.


  1. Begley M, Hill C, Gahan CG (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72(3):1729–1738. doi: 10.1128/AEM. 72.3.1729-1738.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bilban M, Buehler LK, Head S, Desoye G, Quaranta V (2002) Defining signal thresholds in DNA microarrays: exemplary application for invasive cancer. BMC Genomics 3(1):19PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193PubMedCrossRefGoogle Scholar
  4. Bordoni A, Amaretti A, Leonardi A, Boschetti E, Danesi F, Matteuzzi D, Roncaglia L, Raimondi S, Rossi M (2013) Cholesterol-lowering probiotics: in vitro selection and in vivo testing of bifidobacteria. Appl Microbiol Biotechnol 97(18):8273–8281. doi: 10.1007/s00253-013-5088-2 PubMedCrossRefGoogle Scholar
  5. Bottacini F, O’ Connell Motherway M, Kuczynski J, O' Connell KJ, Serafini F, Duranti S, Milani C, Turroni F, Lugli GA, Zomer A, Zhurina D, Riedel C, Ventura M, van Sinderen D (2014) Comparative genomics of the Bifidobacterium breve taxon. BMC Genomics 1(15):170CrossRefGoogle Scholar
  6. Brzostek A, Pawelczyk J, Rumijowska-Galewicz A, Dziadek B, Dziadek J (2009) Mycobacterium tuberculosis is able to accumulate and utilize cholesterol. J Bacteriol 191(21):6584–6591. doi: 10.1128/JB.00488-09 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. doi: 10.1038/nmeth.f.303 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Charbonneau A, The VL (2001) Genomic organization of a human 5beta-reductase and its pseudogene and substrate selectivity of the expressed enzyme. Biochim Biophys Acta 1517(2):228–235PubMedCrossRefGoogle Scholar
  9. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database issue):D141–D145. doi: 10.1093/nar/gkn879 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dowhan W, Bogdanov M, Mileykovskaya E (2008) Functional roles of lipids in membranes, 5th edn. Elsevier Science, Amsterdam, p 1–37Google Scholar
  11. Drzyzga O, Fernandez de las Heras L, Morales V, Navarro Llorens JM, Perera J (2011) Cholesterol degradation by Gordonia cholesterolivorans. Appl Environ Microbiol 77(14):4802–4810. doi: 10.1128/AEM.05149-11 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Duranti S, Milani CLugli GA, Turroni F, Mancabelli L, Sanchez B, Ferrario C, Viappiani A, Mangifesta M, Mancino W, Guiemonde M, Margolles A, van Sinderen D, Ventura M (2014a) Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum. Environ Microbiol (in press)Google Scholar
  13. Duranti S, Turroni F, Lugli GA, Milani C, Viappiani A, Mangifesta M, Gioiosa L, Palanza P, van Sinderen D, Ventura M (2014b) Genomic characterization and transcriptional studies of the starchutilizing Bifidobacterium adolescentis 22L. Appl Environ Microbiol 80(19):6080–90PubMedCentralPubMedCrossRefGoogle Scholar
  14. Edgar JR, Bell RM (1978) Biosynthesis in Escherichia coli fo sn-glycerol 3-phosphate, a precursor of phospholipid. J Biol Chem 253(18):6348–6353PubMedGoogle Scholar
  15. Gerard P, Lepercq P, Leclerc M, Gavini F, Raibaud P, Juste C (2007) Bacteroides sp. strain D8, the first cholesterol-reducing bacterium isolated from human feces. Appl Environ Microbiol 73(18):5742–5749. doi: 10.1128/AEM. 02806-06 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Ghiselli G, Schaefer EJ, Gascon P, Breser HB Jr (1981) Type III hyperlipoproteinemia associated with apolipoprotein E deficiency. Science 214(4526):1239–1241PubMedCrossRefGoogle Scholar
  17. Gimpl G, Burger K, Fahrenholz F (1997) Cholesterol as modulator of receptor function. Biochemistry 36(36):10959–10974. doi: 10.1021/bi963138w PubMedCrossRefGoogle Scholar
  18. Goff DC Jr, Bertoni AG, Kramer H, Bonds D, Blumenthal RS, Tsai MY, Psaty BM (2006) Dyslipidemia prevalence, treatment, and control in the Multi-Ethnic Study of Atherosclerosis (MESA): gender, ethnicity, and coronary artery calcium. Circulation 113(5):647–656. doi: 10.1161/CIRCULATIONAHA.105.552737 PubMedCrossRefGoogle Scholar
  19. Grill JP, Cayuela C, Antoine JM, Schneider F (2000) Effects of Lactobacillus amylovorus and Bifidobacterium breve on cholesterol. Lett Appl Microbiol 31(2):154–156PubMedCrossRefGoogle Scholar
  20. Ishimwe N, Daliri EB, Lee BH, Fang F, Du G (2014) The perspective on cholesterol lowering mechanisms of probiotics. Mol Nutr Food Res. doi: 10.1002/mnfr.201400548 Google Scholar
  21. Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A 105(36):13580–13585. doi: 10.1073/pnas.0804437105 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Jones ML, Martoni CJ, Parent M, Prakash S (2012) Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br J Nutr 107(10):1505–1513. doi: 10.1017/S0007114511004703 PubMedCrossRefGoogle Scholar
  23. Kimoto H, Ohmomo S, Okamoto T (2002) Cholesterol removal from media by lactococci. J Dairy Sci 85(12):3182–3188. doi: 10.3168/jds.S0022-0302(02)74406-8 PubMedCrossRefGoogle Scholar
  24. Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, Chakraborty C, Singh B, Marotta F, Jain S, Yadav H (2012) Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res 2012:902917. doi: 10.1155/2012/902917 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Lahti L, Salonen A, Kekkonen RA, Salojarvi J, Jalanka-Tuovinen J, Palva A, Oresic M, de Vos WM (2013) Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data. Peer J 1:e32. doi: 10.7717/peerj.32 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Liong MT, Shah NP (2006) Effects of a Lactobacillus casei synbiotic on serum lipoprotein, intestinal microflora, and organic acids in rats. J Dairy Sci 89(5):1390–1399. doi: 10.3168/jds.S0022-0302(06)72207-X PubMedCrossRefGoogle Scholar
  27. Lye HS, Rusul G, Liong MT (2010) Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. J Dairy Sci 93(4):1383–1392. doi: 10.3168/jds. 2009-2574 PubMedCrossRefGoogle Scholar
  28. McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, Wendel D, Wilke A, Huse S, Hufnagle J, Meyer F, Knight R, Caporaso JG (2012) The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. GigaScience 1(1):7. doi: 10.1186/2047-217X-1-7 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Meile L, Ludwig W, Rueger U, Gut C, Kaufmann P, Dasen G, Senger S, Teuber M (1997) Bifidobacterium lactis sp. nov., a moderately oxygen tolerant species isolated from fermented milk. Syst Appl Microbiol 20:57–64CrossRefGoogle Scholar
  30. Milani C, Duranti S, Lugli GA, Bottacini F, Strati F, Arioli S, Foroni E, Turroni F, van Sinderen D, Ventura M (2013) Comparative genomics of Bifidobacterium animalis subsp. lactis reveals a strict monophyletic bifidobacterial taxon. Appl Environ Microbiol 79(14):4304–4315PubMedCentralPubMedCrossRefGoogle Scholar
  31. Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F, Mangifesta M, Sanchez B, Viappiani A, Mancabelli L, Taminiau B, Delcenserie V, Barrangou R, Margolles A, van Sinderen D, Ventura M (2014) Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol 80(20):6290–6302. doi: 10.1128/AEM. 02308-14 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Nagpal R, Kumar A, Kumar M, Behare PV, Jain S, Yadav H (2012) Probiotics, their health benefits and applications for developing healthier foods: a review. Fems Microbiol Lett 334(1):1–15. doi: 10.1111/j.1574-6968.2012.02593.x PubMedCrossRefGoogle Scholar
  33. Noh DO, Kim SH, Gilliland SE (1997) Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121. J Dairy Sci 80(12):3107–3113. doi: 10.3168/jds.S0022-0302(97)76281-7 PubMedCrossRefGoogle Scholar
  34. Noriega L, Cuevas I, Margolles A, Los Reyes-Gavilan CGD (2006) Deconjugation and bile salts hydrolase activity by Bifidobacterium strains with acquired resistance to bile. Int Dairy J 16(8):850–855. doi: 10.1016/j.idairyj.2005.09.008 CrossRefGoogle Scholar
  35. Ooi LG, Liong MT (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11(6):2499–2522. doi: 10.3390/Ijms11062499 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26(6):715–721. doi: 10.1093/bioinformatics/btq041 PubMedCrossRefGoogle Scholar
  37. Parvez S, Kim HY, Lee HC, Kim DS (2006) Bile salt hydrolase and cholesterol removal effect by Bifidobacterium bifidum NRRL 1976. World J Microbiol Biotech 22(5):455–459. doi: 10.1007/s11274-005-9056-6 CrossRefGoogle Scholar
  38. Pereira DI, Gibson GR (2002a) Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Microbiol 68(9):4689–4693PubMedCentralPubMedCrossRefGoogle Scholar
  39. Pereira DI, Gibson GR (2002b) Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit Rev Biochem Mol Biol 37(4):259–281. doi: 10.1080/10409230290771519 PubMedCrossRefGoogle Scholar
  40. Remagni MC, Paladino M, Locci F, Romeo FV, Zago M, Povolo M, Contarini G, Carminati D (2013) Cholesterol removal capability of lactic acid bacteria and related cell membrane fatty acid modifications. Folia Microbiol (Praha) 58(6):443–449. doi: 10.1007/s12223-013-0228-8 CrossRefGoogle Scholar
  41. Reuter G (1963) [Comparative Studies on the Bifidus Flora in the Feces of Infants and Adults. With a Contribution to Classification and Nomenclature of Bifidus Strains]. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. 1. Abt. Medizinisch-hygienische Bakteriologie, Virusforschung und Parasitologie. Originale 191:486–507Google Scholar
  42. Reynier MO, Montet JC, Gerolami A, Marteau C, Crotte C, Montet AM, Mathieu S (1981) Comparative effects of cholic, chenodeoxycholic, and ursodeoxycholic acids on micellar solubilization and intestinal absorption of cholesterol. J Lipid Res 22(3):467–473PubMedGoogle Scholar
  43. Rouillard JM, Zuker M, Gulari E (2003) OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Res 31(12):3057–3062PubMedCentralPubMedCrossRefGoogle Scholar
  44. Ruiz L, Margolles A, Sanchez B (2013) Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 4:396. doi: 10.3389/fmicb.2013.00396 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, USAGoogle Scholar
  46. Sanchez B, Champomier-Verges MC, Stuer-Lauridsen B, Ruas-Madiedo P, Anglade P, Baraige F, de los Reyes-Gavilan CG, Johansen E, Zagorec M, Margolles A (2007) Adaptation and response of Bifidobacterium animalis subsp. lactis to bile: a proteomic and physiological approach. Appl Environ Microbiol 73(21):6757–6767. doi: 10.1128/AEM.00637-07 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Scardovi VFC (1974) Bifidobacterium catenulatum, Bifidobacterium dentium, and Bifidobacterium angulatum: three new species and their deoxyribonucleic and homology relationships. Int J Syst Bacteriol 24:6–20CrossRefGoogle Scholar
  48. Scardovi V, Trovatelli LD, Biavati B, Zani G (1979) Bifidobacterium cuniculi, Bifidobacterium choerinum, Bifidobacterium boum, and Bifidobacterium pseudocatenulatum: four new species and their deoxyribonucleic and homology relationships. Int J Syst Bacteriol 29:291–311CrossRefGoogle Scholar
  49. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR et al (2008) The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A 105:18964–9PubMedCentralPubMedCrossRefGoogle Scholar
  50. Serafini F, Turroni F, Guglielmetti S, Gioiosa L, Foroni E, Sanghez V, Bartolomucci A, Motherway MO, Palanza P, van Sinderen D, Ventura M (2012) An efficient and reproducible method for transformation of genetically recalcitrant bifidobacteria. FEMS Microbiol Lett 333(2):146–152. doi: 10.1111/j.1574-6968.2012.02605.x PubMedCrossRefGoogle Scholar
  51. Serafini F, Turroni F, Ruas-Madiedo P, Lugli GA, Milani C, Duranti S, Zamboni N, Bottacini F, van Sinderen D, Margolles A, Ventura M (2014) Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression. Int J Food Microbiol 178:50–59. doi: 10.1016/j.ijfoodmicro.2014.02.024 PubMedCrossRefGoogle Scholar
  52. Tahri K, Grill JP, Schneider F (1997) Involvement of trihydroxyconjugated bile salts in cholesterol assimilation by bifidobacteria. Curr Microbiol 34(2):79–84PubMedCrossRefGoogle Scholar
  53. Tanaka H, Doesburg K, Iwasaki T, Mierau I (1999) Screening of lactic acid bacteria for bile salt hydrolase activity. J Dairy Sci 82(12):2530–2535. doi: 10.3168/jds.S0022-0302(99)75506-2 PubMedCrossRefGoogle Scholar
  54. Tissier H (1900) Recherchers sur la flora intestinale normale et pathologique du nourisson. University of Paris, ParisGoogle Scholar
  55. Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, Cagnasso P, Bizzarri B, De'angelis GL, Shanahan F, van Sinderen D, Ventura M (2009) Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol 75(6):1534–45PubMedCentralPubMedCrossRefGoogle Scholar
  56. Turroni F, Bottacini F, Foroni E, Mulder I, Kim JH, Zomer A, Sanchez B, Bidossi A, Ferrarini A, Giubellini V, Delledonne M, Henrissat B, Coutinho P, Oggioni M, Fitzgerald GF, Mills D, Margolles A, Kelly D, van Sinderen D, Ventura M (2010a) Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci U S A 107(45):19514–19519. doi: 10.1073/pnas.1011100107
  57. Turroni F, Foroni E, O'Connell Motherway M, Bottacini F, Giubellini V, Zomer A, Ferrarini A, Delledonne M, Zhang Z, van Sinderen D, Ventura M (2010b) Characterization of the serpin-encoding gene of Bifidobacterium breve 210B. Appl Environ Microbiol 76(10):3206–3219. doi: 10.1128/AEM.02938-09
  58. Turroni F, Milani C, van Sinderen D, Ventura M (2011) Genetic strategies for mucin metabolism in Bifidobacterium bifidum PRL2010: an example of possible human-microbe co-evolution. Gut Microbe 2(3):183–189CrossRefGoogle Scholar
  59. Turroni F, Strati F, Foroni E, Serafini F, Duranti S, van Sinderen D, Ventura M (2012) Analysis of predicted carbohydrate transport systems encoded by Bifidobacterium bifidum PRL2010. Appl Environ Microbiol 78(14):5002–5012. doi: 10.1128/AEM. 00629-12 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Turroni F, Serafini F, Foroni E, Duranti S, O'Connell Motherway M, Taverniti V, Mangifesta M, Milani C, Viappiani A, Roversi T, Sanchez B, Santoni A, Gioiosa L, Ferrarini A, Delledonne M, Margolles A, Piazza L, Palanza P, Bolchi A, Guglielmetti S, van Sinderen D, Ventura M (2013) Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions. Proc Natl Acad Sci U S A 110(27):11151–11156. doi: 10.1073/pnas.1303897110 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Turroni F, Taverniti V, Ruas-Madiedo P, Duranti S, Guglielmetti S, Lugli GA, Gioiosa L, Palanza P, Margolles A, van Sinderen D, Ventura M (2014a) Bifidobacterium bifidum PRL2010 modulates the host innate immune response. Appl Environ Microbiol 80(2):730–740. doi: 10.1128/AEM. 03313-13 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Turroni F, Ventura M, Butto LF, Duranti S, O'Toole PW, Motherway MO, van Sinderen D (2014b) Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell Mol Life Sci 71(2):183–203. doi: 10.1007/s00018-013-1318-0 PubMedCrossRefGoogle Scholar
  63. Usman HA (2000) Effect of administration of Lactobacillus gasseri on serum lipids and fecal steroids in hypercholesterolemic rats. J Dairy Sci 83(8):1705–1711. doi: 10.3168/jds.S0022-0302(00)75039-9 PubMedCrossRefGoogle Scholar
  64. Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW, Eltis LD (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A 104(6):1947–1952. doi: 10.1073/pnas.0605728104 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Ventura M, O'Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR, van Sinderen D, O'Toole PW (2009) Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 7(1):61–71. doi: 10.1038/nrmicro2047 PubMedCrossRefGoogle Scholar
  66. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608–1615. doi: 10.1093/bioinformatics/btq249 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258(5081):468–471PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ilaria Zanotti
    • 1
  • Francesca Turroni
    • 2
    Email author
  • Antonio Piemontese
    • 1
  • Leonardo Mancabelli
    • 3
  • Christian Milani
    • 3
  • Alice Viappiani
    • 4
  • Gilda Prevedini
    • 3
  • Borja Sanchez
    • 5
    • 6
  • Abelardo Margolles
    • 5
  • Lisa Elviri
    • 1
  • Bernini Franco
    • 1
  • Douwe van Sinderen
    • 2
  • Marco Ventura
    • 3
  1. 1.Department of PharmacyUniversity of ParmaParmaItaly
  2. 2.Alimentary Pharmabiotic Centre and Department of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
  3. 3.Laboratory of Probiogenomics, Department of Life SciencesUniversity of ParmaParmaItaly
  4. 4.GenProbio srlParmaItaly
  5. 5.Dairy Research Institute of AsturiasSpanish National Research Council (IPLA-CSIC)VillaviciosaSpain
  6. 6.Department of Analytical Chemistry and Food Science, Faculty of Food Science and TechnologyUniversity of VigoVigoSpain

Personalised recommendations