Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 14, pp 5939–5950 | Cite as

Functional gene-based discovery of phenazines from the actinobacteria associated with marine sponges in the South China Sea

  • Valliappan Karuppiah
  • Yingxin Li
  • Wei Sun
  • Guofang Feng
  • Zhiyong LiEmail author
Applied genetics and molecular biotechnology

Abstract

Phenazines represent a large group of nitrogen-containing heterocyclic compounds produced by the diverse group of bacteria including actinobacteria. In this study, a total of 197 actinobacterial strains were isolated from seven different marine sponge species in the South China Sea using five different culture media. Eighty-seven morphologically different actinobacterial strains were selected and grouped into 13 genera, including Actinoalloteichus, Kocuria, Micrococcus, Micromonospora, Mycobacterium, Nocardiopsis, Prauserella, Rhodococcus, Saccharopolyspora, Salinispora, Serinicoccus, and Streptomyces by the phylogenetic analysis of 16S rRNA gene. Based on the screening of phzE genes, ten strains, including five Streptomyces, two Nocardiopsis, one Salinispora, one Micrococcus, and one Serinicoccus were found to be potential for phenazine production. The level of phzE gene expression was highly expressed in Nocardiopsis sp. 13-33-15, 13-12-13, and Serinicoccus sp. 13-12-4 on the fifth day of fermentation. Finally, 1,6-dihydroxy phenazine (1) from Nocardiopsis sp. 13-33-15 and 13-12-13, and 1,6-dimethoxy phenazine (2) from Nocardiopsis sp. 13-33-15 were isolated and identified successfully based on ESI-MS and NMR analysis. The compounds 1 and 2 showed antibacterial activity against Bacillus mycoides SJ14, Staphylococcus aureus SJ51, Escherichia coli SJ42, and Micrococcus luteus SJ47. This study suggests that the integrated approach of gene screening and chemical analysis is an effective strategy to find the target compounds and lays the basis for the production of phenazine from the sponge-associated actinobacteria.

Keywords

Actinobacteria Sponges Diversity Phenazine 

Notes

Acknowledgments

This study was financially supported by the High-Tech Research and Development Program of China (2013AA092901). Authors thank Dr. M. Gopi, Conservation of Coastal and Marine Resources Division, National Centre for Sustainable Coastal Management, Anna University Campus, Chennai, Tamil Nadu, India, for identifying three sponges based on sponge morphology.

Supplementary material

253_2015_6547_MOESM1_ESM.pdf (415 kb)
ESM 1 (PDF 414 kb)

References

  1. Abdelfattah MS, Kazufumi T, Ishibashi M (2011a) Isolation and structure elucidation of izuminosides A–C: a rare phenazine glycosides from Streptomyces sp. IFM 11260. J Antibiot 64:271–275PubMedCrossRefGoogle Scholar
  2. Abdelfattah MS, Kazufumi T, Ishibashi M (2011b) New pyranonaphthoquinones and a phenazine alkaloid isolated from Streptomyces sp., IFM 11307 with trail resistance-overcoming activity. J Antibiot 64:729–734PubMedCrossRefGoogle Scholar
  3. Abdelmohsen UR, Bayer K, Hentschel U (2014a) Diversity, abundance and natural products of marine sponge associated actinomycetes. Nat Prod Rep 31:381–399PubMedCrossRefGoogle Scholar
  4. Abdelmohsen UR, Yang C, Horn H, Hajjar D, Ravasi T, Hentschel U (2014b) Actinomycetes from Red Sea sponges: sources for chemical and phylogenetic diversity. Mar Drugs 12:2771–2789PubMedCentralPubMedCrossRefGoogle Scholar
  5. Abken HJ, Tietze M, Brodersen J, Bäumer S, Beifuss U, Deppenmeier U (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J Bacteriol 180:2027–2032PubMedCentralPubMedGoogle Scholar
  6. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417:141–147PubMedCrossRefGoogle Scholar
  7. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2012) Marine natural products. Nat Prod Rep 29:144–222PubMedCrossRefGoogle Scholar
  8. Craney A, Ozimok C, Pimentel-Elardo SM, Capretta A, Nodwell JR (2012) Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem Biol 19:1020–1027PubMedCrossRefGoogle Scholar
  9. de Andrade-Neto V, Goulart MOF, da Silva Filho JF, da Silva MJ, Pinto MCFR, Pinto AV, Zalis MG, Carvalho LH, Krettli AU (2004) Antimalarial activity of phenazines from lapachol, β-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg Med Chem Lett 14:1145–1149PubMedCrossRefGoogle Scholar
  10. Fuerst JA (2014) Diversity and biotechnological potential of microorganisms associated with marine sponges. Appl Microbiol Biotechnol 98:7331–7347PubMedCrossRefGoogle Scholar
  11. Gao X, Lu Y, Xing Y, Ma Y, Lu J, Bao W, Wang Y, Xi T (2012) A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol Res 167:616–622PubMedCrossRefGoogle Scholar
  12. Greenhagen BT, Shi K, Robinson H, Gamage S, Bera AK, Ladner JE, Parsons JF (2008) Crystal structure of the pyocyanin biosynthetic protein PhzS. Biochemistry 47:5281–5289PubMedCrossRefGoogle Scholar
  13. Han M, Liu F, Zhang F, Li Z, Lin H (2012) Bacterial and archaeal symbionts in the South China Sea sponge Phakellia fusca: Community structure, relative abundance, and ammonia-oxidizing populations. Mar Biotechnol 14:701–713PubMedCrossRefGoogle Scholar
  14. Heine D, Martin K, Hertweck C (2014) Genomics-guided discovery of endophenazines from Kitasatospora sp. HKI 714. J Nat Prod 77:1083–1087PubMedCrossRefGoogle Scholar
  15. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microb Ecol 55:167–177CrossRefGoogle Scholar
  16. Hochmuth T, Niederkruger H, Gernert C, Siegl A, Taudien S, Platzer M, Crews P, Hentschel U, Piel J (2010) Linking chemical and microbial diversity in marine sponges: possible role for poribacteria as producers of methyl-branched fatty acids. Chembiochem 11:2572–2578PubMedCrossRefGoogle Scholar
  17. Hooper JNA, Van Soest RWM (2002) Systema Porifera: a guide to the classification of sponges. Kluwer Academic/ Plenum Publishers, Dordrecht, p 1756CrossRefGoogle Scholar
  18. Hosaka T, Ohnishi-Kameyama M, Muramatsu H, Murakami K, Tsurumi Y, Kodani S, Yoshida M, Fujie A, Ochi K (2009) Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol 27:462–464PubMedCrossRefGoogle Scholar
  19. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Ōmura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531PubMedCrossRefGoogle Scholar
  20. Izumikawa M, Khan ST, Takagi M, Shin-ya K (2010) Sponge-derived Streptomyces producing isoprenoids via the mevalonate pathway. J Nat Prod 73:208–212PubMedCrossRefGoogle Scholar
  21. Jackson SA, Kennedy J, Morrissey JP, O’Gara F, Dobson ADW (2012) Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters. Microb Ecol 64:105–116PubMedCrossRefGoogle Scholar
  22. Jensen PR, Dwight R, Fenical W (1991) Distribution of actinomycetes in near-shore tropical marine sediments. Appl Environ Microbiol 57:1102–1108PubMedCentralPubMedGoogle Scholar
  23. Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W (2005) Culturable marine actinomycete diversity from tropical Pacific ocean sediments. Environ Microbiol 7:1039–1048PubMedCrossRefGoogle Scholar
  24. Jiang S, Li X, Zhang L, Sun W, Dai S, Xie L, Liu Y, Lee KJ (2008) Culturable actinobacteria isolated from marine sponge Iotrochota sp. Mar Biol 153:945–952CrossRefGoogle Scholar
  25. Khan ST, Izumikawa M, Motohashi K, Mukai A, Takagi M, Shin-Ya K (2010) Distribution of the 3-hydroxyl-3-methylglutaryl coenzyme A reductase gene and isoprenoid production in marine-derived actinobacteria. FEMS Microbiol Lett 304:89–96PubMedCrossRefGoogle Scholar
  26. Khan ST, Musarrat J, Alkhedhairy AA, Kazuo S (2014) Diversity of bacteria and polyketide synthase associated with marine sponge Haliclona sp. Ann Microbiol 64:199–207CrossRefGoogle Scholar
  27. Kim TK, Garson MJ, Fuerst JA (2005) Marine actinomycetes related to the “Salinispora” group from the Great Barrier Reef sponge Pseudoceratina clavata. Environ Microbiol 7:509–518PubMedCrossRefGoogle Scholar
  28. Konig GM, Kehraus S, Seibert SF, Abdel-Lateff A, Muller D (2006) Natural products from marine organisms and their associated microbes. Chembiochem 7:229–238PubMedCrossRefGoogle Scholar
  29. Laursen JB, Nielsen J (2004) Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 104:1663–1685PubMedCrossRefGoogle Scholar
  30. Lewis K, Epstein S, D'Onofrio A, Ling LL (2010) Uncultured microorganisms as a source of secondary metabolites. J Antibiot 63:468–476PubMedCrossRefGoogle Scholar
  31. Li C-Q, Liu W-C, Zhu P, Yang J-L, Cheng K-D (2011) Phylogenetic diversity of bacteria associated with the marine sponge Gelliodescarnosa collected from the Hainan island coastal waters of the South China Sea. Microb Ecol 62:800–812PubMedCrossRefGoogle Scholar
  32. Li Y, Tang S-K, Chen Y-G, Wu J-Y, Zhi X-Y, Zhang Y-Q, Li W-J (2009) Prauserella salsuginis sp. nov., Prauserella flava sp. nov., Prauserella aidingensis sp. nov. and Prauserella sediminis sp. nov., isolated from a salt lake. IJSEM 59:2923–2928PubMedGoogle Scholar
  33. Liu H, He Y, Jiang H, Peng H, Huang X, Zhang X, Thomashow LS, Xu Y (2007) Characterization of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad- spectrum antifungal activity from green pepper rhizosphere. Curr Microbiol 54:302–306PubMedCrossRefGoogle Scholar
  34. Makgatho ME, Anderson R, O’Sullivan JF, Egan TJ, Freese JA, Cornelius N, van Rensburg CEJ (2000) Tetramethylpiperidine-substituted phenazines as novel anti-plasmodial agents. Drug Dev Res 50:195–202CrossRefGoogle Scholar
  35. Mavrodi DV, Parejko JA, Mavrodi OV, Kwak YS, Weller DM, Blankenfeldt W, Thomashow LS (2013) Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environ Microbiol 15:675–686PubMedCrossRefGoogle Scholar
  36. Mavrodi DV, Peever TL, Mavrodi OV, Parejko JA, Raaijmakers JM, Lemanceau P, Mazurier S, Heide L, Blankenfeldt W, Weller DM, Thomashow LS (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76:3866–3879CrossRefGoogle Scholar
  37. Mayer AM, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, McIntosh JM, Newman DJ, Potts BC, Shuster DE (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31:255–265PubMedCrossRefGoogle Scholar
  38. Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011PubMedCentralPubMedCrossRefGoogle Scholar
  39. Mitova MI, Lang G, Wiese J, Imhoff JF (2008) Subinhibitory concentrations of antibiotics induce phenazine production in a marine Streptomyces sp. J Nat Prod 71:824–827PubMedCrossRefGoogle Scholar
  40. Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel actinobacteria from marine sponges. Antonie Van Leeuwenhoek 87:29–36PubMedCrossRefGoogle Scholar
  41. Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97:87–98PubMedCentralPubMedCrossRefGoogle Scholar
  42. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060PubMedCentralPubMedCrossRefGoogle Scholar
  43. Onaka H, Mori Y, Igarashi Y, Furumai T (2011) Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol 77:400–406PubMedCentralPubMedCrossRefGoogle Scholar
  44. Öner Ö, Ekiz G, Hameş EE, Demir V, Gübe Ö, Ozkaya FC, Yokeş MB, Uzel A, Bedir E (2014) Cultivable sponge-associated actinobacteria from coastal area of Eastern Mediterranean Sea. Adv Microbiol 4:306–316CrossRefGoogle Scholar
  45. Pahlow S, Kloss S, Blattel V, Kirsch K, Hubner U, Cialla D, Rosch P, Weber K, Popp J (2013) Isolation and enrichment of pathogens with a surface-modified aluminium chip for raman spectroscopic applications. Chem Phys Chem 14:3600–3605PubMedGoogle Scholar
  46. Piel J (2006) Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr Med Chem 13:39–50PubMedCrossRefGoogle Scholar
  47. Pierson LS III, Pierson EA (2010) Metabolism and function of phenazines in bacteria: Impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotech 86:1659–1670CrossRefGoogle Scholar
  48. Poongodi S, Karuppiah V, Sivakumar K, Kannan L (2014) Antioxidant activity of Nocardiopsis sp., a marine actinobacterium, isolated from the Gulf of Mannar Biosphere Reserve, India. Natl Acad Sci Lett 37:65–70CrossRefGoogle Scholar
  49. Reveillaud J, Maignien L, Eren AM, Huber JA, Apprill A, Sogin ML, Vanreusel A (2014) Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J 8:1198–1209PubMedCentralPubMedCrossRefGoogle Scholar
  50. Saleh O, Bonitz T, Flinspach K, Kulik A, Burkard N, Muhlenwe A, Vente A, Polnick S, Lammerhofer M, Gust B, Fiedler HP, Heide L (2012) Activation of a silent phenazine biosynthetic gene cluster reveals a novel natural product and a new resistance mechanism against phenazines. Med Chem Commun 3:1009–1019CrossRefGoogle Scholar
  51. Schneemann I, Wiese J, Kunz AL, Imhoff JF (2011) Genetic approach for the fast discovery of phenazine producing bacteria. Mar Drugs 9:772–789PubMedCentralPubMedCrossRefGoogle Scholar
  52. Selvin J, Gandhimathi R, Kiran GS, Priya SS, Ravji TR, Hema TA (2009) Culturable heterotrophic bacteria from the marine sponge Dendrilla nigra: Isolation and phylogenetic diversity of actinobacteria. Helgol Mar Res 63:239–247CrossRefGoogle Scholar
  53. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  54. Simister RL, Deines P, Botté ES, Webster NS, Taylor MW (2012) Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ Microbiol 14:517–524PubMedCrossRefGoogle Scholar
  55. Sizova MV, Hohmann T, Hazen A, Paster BJ, Halem SR, Murphy CM, Panikov NS, Epstein SS (2012) New approaches for isolation of previously uncultivated oral bacteria. Appl Environ Microbiol 78:194–203PubMedCentralPubMedCrossRefGoogle Scholar
  56. Sun W, Dai SK, Jiang SM, Wang GH, Liu GH, Wu HB, Li X (2010) Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea. Antonie Van Leeuwenhoek 98:65–75PubMedCrossRefGoogle Scholar
  57. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347PubMedCentralPubMedCrossRefGoogle Scholar
  58. Valliappan K, Sun W, Li Z (2014) Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products. Appl Microbiol Biotechnol 98:7365–7377PubMedCrossRefGoogle Scholar
  59. van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28:1311–1333PubMedCrossRefGoogle Scholar
  60. Vicente J, Stewart A, Song B, Hill R, Wright J (2013) Biodiversity of actinomycetes associated with Caribbean sponges and their potential for natural product discovery. Mar Biotechnol 15:413–424PubMedCrossRefGoogle Scholar
  61. Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: Love and other relationships. Environ Microbiol 14:335–346PubMedCrossRefGoogle Scholar
  62. Xi L, Ruan J, Huang Y (2012) Diversity and biosynthetic potential of culturable actinomycetes associated with marine sponges in the China Seas. Int J Mol Sci 13:5917–5932PubMedCentralPubMedCrossRefGoogle Scholar
  63. Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci U S A 99:15681–15686PubMedCentralPubMedCrossRefGoogle Scholar
  64. Zeyhle P, Bauer JS, Kalinowski J, Shin-ya K, Gross H, Heide L (2014) Genome-based discovery of a novel membrane-bound 1,6-dihydroxyphenazine prenyltransferase from a marine actinomycete. PLoS ONE 9:e99122PubMedCentralPubMedCrossRefGoogle Scholar
  65. Zhang G, Yang Y, Cao T, Ma L, Ying J (2014) Diversity and novelty of actinobacteria in Arctic marine sediments. Antonie Van Leeuwenhoek 105:743–754PubMedCrossRefGoogle Scholar
  66. Zhang X-Y, Bao J, He F, Xu X-Y, Wang G-H, Qi S-H (2013) Diversity and antibacterial activity of culturable actinobacteria isolated from five species of the South China Sea gorgonian corals. World J Microbiol Biotechnol 29:1107–1116PubMedCrossRefGoogle Scholar
  67. Zotchev SB (2012) Marine actinomycetes as an emerging resource for the drug development pipelines. J Biotechnol 158:168–175PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Valliappan Karuppiah
    • 1
  • Yingxin Li
    • 1
  • Wei Sun
    • 1
  • Guofang Feng
    • 1
  • Zhiyong Li
    • 1
    Email author
  1. 1.Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations