Applied Microbiology and Biotechnology

, Volume 99, Issue 11, pp 4667–4677 | Cite as

Generation of Lactococcus lactis capable of coexpressing epidermal growth factor and trefoil factor to enhance in vitro wound healing

Biotechnological products and process engineering

Abstract

Epidermal growth factor (EGF) and trefoil factor 3 (TFF3) are peptides that actively support the restitution and repair of mucosal epithelial barriers. Previous studies have shown that TFF3 enhanced EGF effect in wound healing, suggesting that the combined application of the two factors may be advantageous in clinical tissue repair. Expression of multiple proteins in a single host is a desirable approach in a biotechnological process, allowing to reduce cost and increase production efficiency. The aim of the present study was to study the feasibility of coexpressing EGF and TFF3 in food grade bacteria, Lactococcus lactis (L. lactis). Using an expression construct allowing simultaneous translation of two separate recombinant peptides, we generated a L. lactis that coexpressed and secreted EGF and TFF3 dually (LL-ET). Western blot analysis revealed that LL-ET secreted 45–54 % more total recombinant peptides (EGF+TFF3) per flask fermentation and 21–37 % more total recombinant proteins in bioreactor fermentation compared to their single factor expressing L. lactis counterparts (LL-EGF and LL-TFF3, respectively). The resulted recombinant EGF and TFF3 showed enhancement in wound healing activity in vitro. Our data suggest that the dual expression and secretion of EGF and TFF3 by L. lactis effectively accelerated cell migration, demonstrating potential future oral application of L. lactis fermentation product containing dual factors or a cocktail of factors to potentially treat intestinal damage and inflammation.

Keywords

TFF EGF Wound healing Lactic acid bacteria Coexpression Intestine 

Supplementary material

253_2015_6542_MOESM1_ESM.pdf (87 kb)
ESM 1(PDF 86 kb)

References

  1. Angov E (2011) Codon usage: nature's roadmap to expression and folding of proteins. Biotechnol J 6:650–659. doi:10.1002/biot.201000332 CrossRefPubMedCentralPubMedGoogle Scholar
  2. Austin S, Nordstrom K (1990) Partition-mediated incompatibility of bacterial plasmids. Cell 60(3):351–354CrossRefPubMedGoogle Scholar
  3. Bahey-El-Din M, Casey PG, Griffin BT, Gahan CGM (2010) Expression of two Listeria monocytogenes antigens (P60 and LLO) in Lactococcus lactis and examination for use as live vaccine vectors. J Med Microbiol 59:904–912CrossRefPubMedGoogle Scholar
  4. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399–1408CrossRefPubMedGoogle Scholar
  5. Bedford A, Huynh E, Fu M, Zhu C, Wey D, de Lange C, Li J (2014) Growth performance of early-weaned pigs is enhanced by feeding epidermal growth factor-expressing Lactococcus lactis fermentation product. J Biotechnol 173:47–52CrossRefPubMedGoogle Scholar
  6. Bredmose L, Madsen S, Vrang A, Ravn P, Johnsen M, Glenting J, Arnau J, Israelsen H (2001) Development of a heterologous gene expression system for use in Lactococcus lactis recombinant protein production with prokaryotic and eukaryotic cells. A comparative view on host physiology. Springer, pp 269–275Google Scholar
  7. Carpenter G, Cohen S (1990) Epidermal growth factor. J Biol Chem 265(14):7709–7712PubMedGoogle Scholar
  8. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24(1):45–66CrossRefPubMedGoogle Scholar
  9. Cheung QC, Yuan Z, Dyce PW, Wu D, DeLange K, Li J (2009) Generation of epidermal growth factor expressing Lactococcus lactis and its enhancement on intestinal development and growth of early-weaned mice. Am J Clin Nutr 89(3):871–879CrossRefPubMedGoogle Scholar
  10. Chinery R, Playford RJ (1995) Combined intestinal trefoil factor and epidermal growth factor is prophylactic against indomethacin-induced gastric damage in the rat. Clin Sci 88(Pt 4):401–403PubMedGoogle Scholar
  11. Chwieralski CE, Schnurra I, Thim L, Hoffmann W (2004) Epidermal growth factor and trefoil factor family 2 synergistically trigger chemotaxis on BEAS-2B cells via different signaling cascades. Am J Respir Cell Mol Biol 31(5):528–537CrossRefPubMedGoogle Scholar
  12. Donovan S, Zijlstra R, Odle J (1994) Use of the piglet to study the role of growth factors in neonatal intestinal development. Endocr Regul 28(4):153–162PubMedGoogle Scholar
  13. Durer U, Hartig R, Bang S, Thim L, Hoffmann W (2007) TFF3 and EGF induce different migration patterns of intestinal epithelial cells in vitro and trigger increased internalization of E-cadherin. Cell Physiol Biochem 20(5):329–346CrossRefPubMedGoogle Scholar
  14. FitzGerald A, Pu M, Marchbank T, Westley B, May F, Boyle J, Yadollahi-Farsani M, Ghosh S, Playford R (2004) Synergistic effects of systemic trefoil factor family 1 (TFF1) peptide and epidermal growth factor in a rat model of colitis. Peptides 25(5):793–801CrossRefPubMedGoogle Scholar
  15. Glück JM, Hoffmann S, Koenig BW, Willbold D (2010) Single vector system for efficient N-myristoylation of recombinant proteins in E. coli. PLoS ONE 5(4):e10081CrossRefPubMedCentralPubMedGoogle Scholar
  16. Greenhalgh DG, Hummel RP, Albertson S, Breeden MP (1993) Synergistic actions of platelet‐derived growth factor and the insulin‐like growth factors in vivo. Wound Repair Regen 1(2):69–81CrossRefPubMedGoogle Scholar
  17. Gupta SK, Bhattacharyya TK, Ghosh TC (2004) Synonymous codon usage in Lactococcus lactis: mutational bias versus translational selection. J Biomol Struct Dyn 21:527–536. doi:10.1080/07391102.2004.10506946 CrossRefPubMedGoogle Scholar
  18. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353. doi:10.1016/j.tibtech.2004.04.006 CrossRefPubMedGoogle Scholar
  19. Hoffmann W (2005) Trefoil factors. Cell Mol Life Sci 62(24):2932–2938CrossRefPubMedGoogle Scholar
  20. Hoffmann W, Jagla W (2002) Cell type specific expression of secretory TFF peptides: colocalization with mucins and synthesis in the brain. Int Rev Cytol 213:147–181CrossRefPubMedGoogle Scholar
  21. Hoffmann F, Rinas U (2004) Stress induced by recombinant protein production in Escherichia coli Physiological Stress Responses in Bioprocesses. Springer, pp 73–92Google Scholar
  22. Jaeger L, Lamar C, Cline T, Cardona C (1990) Effect of orally administered epidermal growth factor on the jejunal mucosa of weaned pigs. Am J Vet Res 51(3):471–474PubMedGoogle Scholar
  23. Kajikawa K, Yasui W, Sumiyoshi H, Yoshida K, Nakayama H, Ayhan A, Yokozaki H, Ito H, Tahara E (1991) Expression of epidermal growth factor in human tissues. Virchows Arch A 418(1):27–32CrossRefGoogle Scholar
  24. Kjellev S (2009) The trefoil factor family—small peptides with multiple functionalities. Cell Mol Life Sci 66(8):1350–1369CrossRefPubMedGoogle Scholar
  25. Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermúdez-Humarán LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Factories 4(1):2CrossRefGoogle Scholar
  26. Lee J, Green MH, Amiel D (1995) Synergistic effect of growth factors on cell outgrowth from explants of rabbit anterior cruciate and medial collateral ligaments. J Orthop Res 13:435–441. doi:10.1002/jor.1100130318 CrossRefPubMedGoogle Scholar
  27. Madsen SM, Arnau J, Vrang A, Givskov M, Israelsen H (1999) Molecular characterization of the pH‐inducible and growth phase‐dependent promoter P170 of Lactococcus lactis. Mol Microbiol 32(1):75–87CrossRefPubMedGoogle Scholar
  28. Oertel M, Graness A, Thim L, Buhling F, Kalbacher H, Hoffmann W (2001) Trefoil factor family peptides promote migration of human bronchial epithelial cells: synergistic effect with epidermal growth factor. Am J Respir Cell Mol Biol 25(4):418–424CrossRefPubMedGoogle Scholar
  29. Reeve B, Hargest T, Gilbert C, Ellis T (2014) Predicting translation initiation rates for designing synthetic biology. Front Bioeng Biotechnol 2:1CrossRefPubMedCentralPubMedGoogle Scholar
  30. Remaut E, Stanssens P, Fiers W (1981) Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda. Gene 15(1):81–93CrossRefPubMedGoogle Scholar
  31. Ringnér M, Krogh M (2005) Folding free energies of 5′-UTRs impact post-transcriptional regulation on a genomic scale in yeast. PLoS Comput Biol 1(7):e72CrossRefPubMedCentralPubMedGoogle Scholar
  32. Rydzanicz R, Zhao XS, Johnson PE (2005) Assembly PCR oligo maker: a tool for designing oligodeoxynucleotides for constructing long DNA molecules for RNA production. Nucleic Acids Res 33(suppl 2):W521–W525CrossRefPubMedCentralPubMedGoogle Scholar
  33. Schierack P, Nordhoff M, Pollmann M, Weyrauch KD, Amasheh S, Lodemann U, Jores J, Tachu B, Kleta S, Blikslager A (2006) Characterization of a porcine intestinal epithelial cell line for in vitro studies of microbial pathogenesis in swine. Histochem Cell Biol 125(3):293–305CrossRefPubMedGoogle Scholar
  34. Sharp PM, Li WH (1987) The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295CrossRefPubMedCentralPubMedGoogle Scholar
  35. Singer AJ, Clark R (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746CrossRefPubMedGoogle Scholar
  36. Storesund T, Hayashi K, Kolltveit KM, Bryne M, Schenck K (2008) Salivary trefoil factor 3 enhances migration of oral keratinocytes. Eur J Oral Sci 116(2):135–140CrossRefPubMedGoogle Scholar
  37. Taupin D, Podolsky DK (2003) Trefoil factors: initiators of mucosal healing. Nat Rev Mol Cell Biol 4(9):721–732CrossRefPubMedGoogle Scholar
  38. Tessier L-H, Sondermeyer P, Faure T, Dreyer D, Benavente A, Villeval D, Courtney M, Lecocq J-P (1984) The influence of mRNA primary and secondary structure on human IFN-γ gene expression in E. coli. Nucleic Acids Res 12(20):7663–7675CrossRefPubMedCentralPubMedGoogle Scholar
  39. Thim L, Woeldike HF, Nielsen PF, Christensen M, Lynch-Devaney K, Podolsky DK (1995) Characterization of human and rat intestinal trefoil factor produced in yeast. Biochemistry 34(14):4757–4764CrossRefPubMedGoogle Scholar
  40. Tuller T, Waldman YY, Kupiec M, Ruppin E (2010) Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci U S A 107:3645–3650. doi:10.1073/pnas.0909910107 CrossRefPubMedCentralPubMedGoogle Scholar
  41. Vandenbroucke K, Hans W, Van Huysse J, Neirynck S, Demetter P, Remaut E, Rottiers P, Steidler L (2004) Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology 127(2):502–513CrossRefPubMedGoogle Scholar
  42. Wright N, Poulsom R, Stamp G, Van Norden S, Sarraf C, Elia G, Ahnen D, Jeffery R, Longcroft J, Pike C (1992) Trefoil peptide gene expression in gastrointestinal epithelial cells in inflammatory bowel disease. Scand J Gastroenterol 27(S193):76–82CrossRefGoogle Scholar
  43. Wright N, Hoffmann W, Otto W, Rio M-C, Thim L (1997) Rolling in the clover: trefoil factor family (TFF)-domain peptides, cell migration and cancer. FEBS Lett 408(2):121–123CrossRefPubMedGoogle Scholar
  44. Xu R, Wang F, Zhang S (2000) Postnatal adaptation of the gastrointestinal tract in neonatal pigs: a possible role of milk-borne growth factors. Livest Prod Sci 66(2):95–107CrossRefGoogle Scholar
  45. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Animal and Poultry ScienceUniversity of GuelphGuelphCanada

Personalised recommendations