Skip to main content

Advertisement

Log in

Bacterial expansins and related proteins from the world of microbes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The discovery of microbial expansins emerged from studies of the mechanism of plant cell growth and the molecular basis of plant cell wall extensibility. Expansins are wall-loosening proteins that are universal in the plant kingdom and are also found in a small set of phylogenetically diverse bacteria, fungi, and other organisms, most of which colonize plant surfaces. They loosen plant cell walls without detectable lytic activity. Bacterial expansins have attracted considerable attention recently for their potential use in cellulosic biomass conversion for biofuel production, as a means to disaggregate cellulosic structures by nonlytic means (“amorphogenesis”). Evolutionary analysis indicates that microbial expansins originated by multiple horizontal gene transfers from plants. Crystallographic analysis of BsEXLX1, the expansin from Bacillus subtilis, shows that microbial expansins consist of two tightly packed domains: the N-terminal domain D1 has a double-ψ β-barrel fold similar to glycosyl hydrolase family-45 enzymes but lacks catalytic residues usually required for hydrolysis; the C-terminal domain D2 has a unique β-sandwich fold with three co-linear aromatic residues that bind β-1,4-glucans by hydrophobic interactions. Genetic deletion of expansin in Bacillus and Clavibacter cripples their ability to colonize plant tissues. We assess reports that expansin addition enhances cellulose breakdown by cellulase and compare expansins with distantly related proteins named swollenin, cerato-platanin, and loosenin. We end in a speculative vein about the biological roles of microbial expansins and their potential applications. Advances in this field will be aided by a deeper understanding of how these proteins modify cellulosic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andberg M, Penttila M, Saloheimo M (2015) Swollenin from Trichoderma reesei exhibits hydrolytic activity against cellulosic substrates with features of both endoglucanases and cellobiohydrolases. Bioresour Technol 181c:105–113. doi:10.1016/j.biortech.2015.01.024

    Google Scholar 

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4. doi:10.1186/1754-6834-3-4

    PubMed Central  PubMed  Google Scholar 

  • Ashwini N, Srividya S (2013) Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3. Biotech 4(2):127–136. doi:10.1007/s13205-013-0134-4

    Google Scholar 

  • Baccelli I, Luti S, Bernardi R, Scala A, Pazzagli L (2014) Cerato-platanin shows expansin-like activity on cellulosic materials. Appl Microbiol Biotechnol 98(1):175–184. doi:10.1007/s00253-013-4822-0

    CAS  PubMed  Google Scholar 

  • Baker JO, King MR, Adney WS, Decker SR, Vinzant TB, Lantz SE, Nieves RE, Thomas SR, Li LC, Cosgrove DJ, Himmel ME (2000) Investigation of the cell-wall loosening protein expansin as a possible additive in the enzymatic saccharification of lignocellulosic biomass. Appl Biochem Biotechnol 84–86:217–223

    PubMed  Google Scholar 

  • Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci U S A 110(17):E1621–E1630. doi:10.1073/pnas.1218984110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boddi S, Comparini C, Calamassi R, Pazzagli L, Cappugi G, Scala A (2004) Cerato-platanin protein is located in the cell walls of ascospores, conidia and hyphae of Ceratocystis fimbriata f. sp. platani. FEMS Microbiol Lett 233(2):341–346. doi:10.1016/j.femsle.2004.03.001

    CAS  PubMed  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382(Pt 3):769–781

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boron AK, Van Loock B, Suslov D, Markakis MN, Verbelen J-P, Vissenberg K (2014) Over-expression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth. Ann Botany. doi:10.1093/aob/mcu221

    Google Scholar 

  • Bouzarelou D, Billini M, Roumelioti K, Sophianopoulou V (2008) EglD, a putative endoglucanase, with an expansin like domain is localized in the conidial cell wall of Aspergillus nidulans. Fungal Gen Bio 45(6):839–850. doi:10.1016/j.fgb.2008.03.001

    CAS  Google Scholar 

  • Bras JL, Cartmell A, Carvalho AL, Verze G, Bayer EA, Vazana Y, Correia MA, Prates JA, Ratnaparkhe S, Boraston AB, Romao MJ, Fontes CM, Gilbert HJ (2011) Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proc Natl Acad Sci U S A 108(13):5237–5242

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from trichoderma, in plant root colonization. Plant Physiol 147(2):779–789

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang SJ, Resch MG, Adams MW, Lunin VV, Himmel ME, Bomble YJ (2013) Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342(6165):1513–1516. doi:10.1126/science.1244273

    CAS  PubMed  Google Scholar 

  • Bunterngsook B, Mhuantong W, Champreda V, Thamchaiphenet A, Eurwilaichitr L (2014) Identification of novel bacterial expansins and their synergistic actions on cellulose degradation. Bioresour Technol 159C:64–71. doi:10.1016/j.biortech.2014.02.004

    Google Scholar 

  • Bunterngsook B, Eurwilaichitr L, Thamchaipenet A, Champreda V (2015) Binding characteristics and synergistic effects of bacterial expansins on cellulosic and hemicellulosic substrates. Bioresour Technol 176:129–135. doi:10.1016/j.biortech.2014.11.042

    CAS  PubMed  Google Scholar 

  • Carvalho CC, Phan NN, Chen Y, Reilly PJ (2014) Carbohydrate binding module tribes. Biopolymers. doi:10.1002/bip.22584

    Google Scholar 

  • Chabre H, Gouyon B, Huet A, Baron-Bodo V, Nony E, Hrabina M, Fenaille F, Lautrette A, Bonvalet M, Maillere B, Bordas-Le Floch V, Van Overtvelt L, Jain K, Ezan E, Batard T, Moingeon P (2010) Molecular variability of group 1 and 5 grass pollen allergens between Pooideae species: implications for immunotherapy. Clin Exp Allergy 40(3):505–519. doi:10.1111/j.1365-2222.2009.03380.x

    CAS  PubMed  Google Scholar 

  • Cosgrove DJ (1996) Plant cell enlargement and the action of expansins. Bioessays 18:533–540

    CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407(6802):321–326

    CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2001) Enhancement of accessibility of cellulose by expansins. US Patent 6:326,470

    Google Scholar 

  • Cosgrove DJ (2014) Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22:122–131. doi:10.1016/j.pbi.2014.11.001

    CAS  PubMed  Google Scholar 

  • Cosgrove DJ, Bedinger P, Durachko DM (1997) Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci U S A 94(12):6559–6564

    PubMed Central  CAS  PubMed  Google Scholar 

  • da Silva AJ, Gomez-Mendoza DP, Junqueira M, Domont GB, Ximenes Ferreira Filho E, de Sousa MV, Ricart CA (2012) Blue native-PAGE analysis of Trichoderma harzianum secretome reveals cellulases and hemicellulases working as multienzymatic complexes. Proteomics 12(17):2729–2738. doi:10.1002/pmic.201200048

    PubMed  Google Scholar 

  • Darley CP, Li Y, Schaap P, McQueen-Mason SJ (2003) Expression of a family of expansin-like proteins during the development of Dictyostelium discoideum. FEBS Lett 546(2–3):416–418

    CAS  PubMed  Google Scholar 

  • Davies GJ, Tolley SP, Henrissat B, Hjort C, Schulein M (1995) Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 A resolution. Biochemistry 34(49):16210–16220

    CAS  PubMed  Google Scholar 

  • de Oliveira AL, Gallo M, Pazzagli L, Benedetti CE, Cappugi G, Scala A, Pantera B, Spisni A, Pertinhez TA, Cicero DO (2011) The structure of the elicitor cerato-platanin (CP), the first member of the CP fungal protein family, reveals a double-psi beta-barrel fold and carbohydrate binding. J Biol Chem 286(20):17560–17568. doi:10.1074/jbc.M111.223644

    PubMed Central  PubMed  Google Scholar 

  • Din N, Gilkes NR, Tekant B, Miller RC, Warren AJ, Kilburn DG (1991) Non-hydrolytic disruption of cellulose fibers by the binding domain of a bacterial cellulase. Bio Technol 9(11):1096–1099. doi:10.1038/Nbt1191-1096

    CAS  Google Scholar 

  • Eibinger M, Ganner T, Bubner P, Rosker S, Kracher D, Haltrich D, Ludwig R, Plank H, Nidetzky B (2014) Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem 289(52):35929–35938. doi:10.1074/jbc.M114.602227

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eriksson T, Borjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microbial Technol 31(3):353–364

    CAS  Google Scholar 

  • Eriksson J, Malmsten M, Tiberg F, Callisen TH, Damhus T, Johansen KS (2005) Model cellulose films exposed to H. insolens glucoside hydrolase family 45 endo-cellulase—the effect of the carbohydrate-binding module. J Colloid Interface Sci 285(1):94–99

    CAS  PubMed  Google Scholar 

  • Frias M, Gonzalez C, Brito N (2011) BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host. New Phytol 192(2):483–495. doi:10.1111/j.1469-8137.2011.03802.x

    CAS  PubMed  Google Scholar 

  • Frischmann A, Neudl S, Gaderer R, Bonazza K, Zach S, Gruber S, Spadiut O, Friedbacher G, Grothe H, Seidl-Seiboth V (2013) Self-assembly at air/water interfaces and carbohydrate binding properties of the small secreted protein EPL1 from the fungus Trichoderma atroviride. J Biol Chem 288(6):4278–4287. doi:10.1074/jbc.M112.427633

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gartemann KH, Kirchner O, Engemann J, Grafen I, Eichenlaub R, Burger A (2003) Clavibacter michiganensis subsp michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. J Biotech 106(2–3):179–191

    CAS  Google Scholar 

  • Georgelis N, Tabuchi A, Nikolaidis N, Cosgrove DJ (2011) Structure-function analysis of the bacterial expansin EXLX1. J Biol Chem 286(19):16814–16823

    PubMed Central  CAS  PubMed  Google Scholar 

  • Georgelis N, Yennawar NH, Cosgrove DJ (2012) Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proc Natl Acad Sci U S A 109(37):14830–14835. doi:10.1073/pnas.1213200109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Georgelis N, Nikolaidis N, Cosgrove DJ (2014) Biochemical analysis of expansin-like proteins from microbes. Carbohydr Polym 100:17–23. doi:10.1016/j.carbpol.2013.04.094

    CAS  PubMed  Google Scholar 

  • Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 153(2):444–455. doi:10.1104/pp. 110.156646

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gourlay K, Hu J, Arantes V, Andberg M, Saloheimo M, Penttila M, Saddler J (2013) Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of pretreated biomass. Bioresour Technol 142:498–503. doi:10.1016/j.biortech.2013.05.053

    CAS  PubMed  Google Scholar 

  • Gourlay K, Hu J, Arantes V, Penttila M, Saddler JN (2014) The use of carbohydrate binding modules (CBMs) to monitor changes in fragmentation and cellulose fibre surface morphology during Cellulase and Swollenin induced deconstruction of lignocellulosic substrates. J Biol Chem. doi:10.1074/jbc.M114.627604

    PubMed  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500. doi:10.1021/cr900339w

    CAS  PubMed  Google Scholar 

  • Hemsworth GR, Davies GJ, Walton PH (2013) Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr Opin Struct Biol 23(5):660–668. doi:10.1016/j.sbi.2013.05.006

    CAS  PubMed  Google Scholar 

  • Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nature Chem Biol 10(2):122–126. doi:10.1038/nchembio.1417

    CAS  Google Scholar 

  • Henrissat B, Teeri TT, Warren RAJ (1998) A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett 425(2):352–354

    CAS  PubMed  Google Scholar 

  • Herve C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP (2010) Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci U S A 107(34):15293–15298. doi:10.1073/pnas.1005732107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jager G, Girfoglio M, Dollo F, Rinaldi R, Bongard H, Commandeur U, Fischer R, Spiess AC, Buchs J (2011) How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. Biotechnol Biofuels 4(1):33. doi:10.1186/1754-6834-4-33

    PubMed Central  PubMed  Google Scholar 

  • Jahr H, Dreier J, Meletzus D, Bahro R, Eichenlaub R (2000) The endo-beta-1,4-glucanase CelA of Clavibacter michiganensis subsp michiganensis is a pathogenicity determinant required for induction of bacterial wilt of tomato. Mol Plant Microbe Inter 13(7):703–714

    CAS  Google Scholar 

  • Kang K, Wang S, Lai G, Liu G, Xing M (2013) Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose. BMC Biotechnol 13:42. doi:10.1186/1472-6750-13-42

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kende H, Bradford K, Brummell D, Cho HT, Cosgrove D, Fleming A, Gehring C, Lee Y, McQueen-Mason S, Rose J, Voesenek LA (2004) Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55(3):311–314. doi:10.1007/s11103-004-0158-6

    CAS  PubMed  Google Scholar 

  • Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filee P, Charlier P, Joris B, Tabuchi A, Nikolaidis N, Cosgrove DJ (2008) Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc Natl Acad Sci U S A 105(44):16876–16881

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kikuchi T, Li HM, Karim N, Kennedy MW, Moens M, Jones JT (2009) Identification of putative expansin-like genes from the pine wood nematode, Bursaphelenchus xylophilus, and evolution of the expansin gene family within the Nematoda. Nematol 11:355–364. doi:10.1163/156854109x446953

    CAS  Google Scholar 

  • Kim ES, Lee HJ, Bang WG, Choi IG, Kim KH (2009) Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnol Bioeng 102(5):1342–1353. doi:10.1002/bit.22193

    CAS  PubMed  Google Scholar 

  • Kim IJ, Ko HJ, Kim TW, Choi IG, Kim KH (2013a) Characteristics of the binding of a bacterial expansin (BsEXLX1) to microcrystalline cellulose. Biotechnol Bioeng 110(2):401–407

    CAS  PubMed  Google Scholar 

  • Kim IJ, Ko HJ, Kim TW, Nam KH, Choi IG, Kim KH (2013b) Binding characteristics of a bacterial expansin (BsEXLX1) for various types of pretreated lignocellulose. Appl Microbiol Biotechnol 97(12):5381–5388. doi:10.1007/s00253-012-4412-6

    CAS  PubMed  Google Scholar 

  • Kim IJ, Lee HJ, Choi IG, Kim KH (2014) Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6001-3

    Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angewandte Chem Internl Ed 50(24):5438–5466

    CAS  Google Scholar 

  • Laine MJ, Haapalainen M, Wahlroos T, Kankare K, Nissinen R, Kassuwi S, Metzler MC (2000) The cellulase encoded by the native plasmid of Clavibacter michiganensis ssp sepedonicus plays a role in virulence and contains an expansin-like domain. Physiol Mol Plant Path 57(5):221–233. doi:10.1006/pmpp.2000.0301

    CAS  Google Scholar 

  • Lee HJ, Lee S, Ko HJ, Kim KH, Choi IG (2010) An expansin-like protein from Hahella chejuensis binds cellulose and enhances cellulase activity. Mol Cells 29(4):379–385. doi:10.1007/s10059-010-0033-z

    CAS  PubMed  Google Scholar 

  • Lee DW, Seo JB, Kang JS, Koh SH, Lee SH, Koh YH (2012) Identification and characterization of expansins from Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae). Plant Path J 28(4):409–417. doi:10.5423/Ppj.Oa.08.2012.0122

    CAS  Google Scholar 

  • Lehtio J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci U S A 100(2):484–489

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li ZC, Durachko DM, Cosgrove DJ (1993) An oat coleoptile wall protein that induces wall extension in vitro and that is antigenically related to a similar protein from cucumber hypocotyls. Planta 191:349–356

    CAS  Google Scholar 

  • Li Y, Darley CP, Ongaro V, Fleming A, Schipper O, Baldauf SL, McQueen-Mason SJ (2002) Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol 128(3):854–864

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li LC, Bedinger PA, Volk C, Jones AD, Cosgrove DJ (2003) Purification and characterization of four beta-expansins (Zea m 1 isoforms) from maize pollen. Plant Physiol 132(4):2073–2085

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin H, Shen Q, Zhan JM, Wang Q, Zhao YH (2013) Evaluation of bacterial expansin EXLX1 as a cellulase synergist for the saccharification of lignocellulosic agro-Industrial wastes. Plos One 8(9):e75022

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Liu C, Ma Y, Hong J, Zhang M (2014) Heterologous expression and functional characterization of a novel cellulose-disruptive protein LeEXP2 from Lycopersicum esculentum. J Biotechnol 186:148–155. doi:10.1016/j.jbiotec.2014.07.013

    CAS  PubMed  Google Scholar 

  • Maly T, Cui D, Griffin RG, Miller AF (2012) 1H dynamic nuclear polarization based on an endogenous radical. J Phys Chem B 116(24):7055–7065. doi:10.1021/jp300539j

    CAS  PubMed  Google Scholar 

  • McQueen-Mason S, Cosgrove DJ (1994) Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc Natl Acad Sci U S A 91(14):6574–6578

    PubMed Central  CAS  PubMed  Google Scholar 

  • McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol 107(1):87–100

    PubMed Central  CAS  PubMed  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall expansion in plants. Plant Cell 4:1425–1433

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakatani Y, Yamada R, Ogino C, Kondo A (2013) Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose. Microb Cell Fact 12(1):66. doi:10.1186/1475-2859-12-66

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nardi C, Escudero C, Villarreal N, Martinez G, Civello PM (2013) The carbohydrate-binding module of Fragaria x ananassa expansin 2 (CBM-FaExp2) binds to cell wall polysaccharides and decreases cell wall enzyme activities “in vitro”. J Plant Res 126(1):151–159

    CAS  PubMed  Google Scholar 

  • Nikolaidis N, Doran N, Cosgrove DJ (2014) Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion. Mol Biol Evol 31(2):376–386. doi:10.1093/molbev/mst206

    CAS  PubMed  Google Scholar 

  • Ogasawara S, Shimada N, Kawata T (2009) Role of an expansin-like molecule in Dictyostelium morphogenesis and regulation of its gene expression by the signal transducer and activator of transcription protein Dd-STATa. Devel Growth Diff 51(2):109–122. doi:10.1111/j.1440-169X.2009.01086.x

    CAS  Google Scholar 

  • Olarte-Lozano M, Mendoza-Nunez MA, Pastor N, Segovia L, Folch-Mallol J, Martinez-Anaya C (2014) PcExl1 a novel acid expansin-like protein from the plant pathogen Pectobacterium carotovorum, binds cell walls differently to BsEXLX1. PLoS One 9(4):e95638. doi:10.1371/journal.pone.0095638

    PubMed Central  PubMed  Google Scholar 

  • Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158(4):1933–1943

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pastor N, Davila S, Perez-Rueda E, Segovia L, Martinez-Anaya C (2014) Electrostatic analysis of bacterial expansins. Proteins. doi:10.1002/prot.24718

    Google Scholar 

  • Pazzagli L, Cappugi G, Manao G, Camici G, Santini A, Scala A (1999) Purification, characterization, and amino acid sequence of cerato-platanin, a new phytotoxic protein from Ceratocystis fimbriata f. sp. platani. J Biol Chem 274(35):24959–24964

    CAS  PubMed  Google Scholar 

  • Qin L, Kudla U, Roze EH, Goverse A, Popeijus H, Nieuwland J, Overmars H, Jones JT, Schots A, Smant G, Bakker J, Helder J (2004) Plant degradation: a nematode expansin acting on plants. Nature 427(6969):30

    CAS  PubMed  Google Scholar 

  • Quiroz-Castaneda RE, Martinez-Anaya C, Cuervo-Soto LI, Segovia L, Folch-Mallol JL (2011) Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta. Microb Cell Fact 10:8. doi:10.1186/1475-2859-10-8

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99(4):1271–1274

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reid CW, Legaree BA, Clarke AJ (2007) Role of Ser216 in the mechanism of action of membrane-bound lytic transglycosylase B: further evidence for substrate-assisted catalysis. FEBS Lett 581(25):4988–4992. doi:10.1016/j.febslet.2007.09.037

    CAS  PubMed  Google Scholar 

  • Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssonen E, Bhatia A, Ward M, Penttila M (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269(17):4202–4211

    CAS  PubMed  Google Scholar 

  • Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6(12):242

    PubMed Central  PubMed  Google Scholar 

  • Sampedro J, Guttman M, Li LC, Cosgrove DJ (2015) Evolutionary divergence of beta-expansin structure and function in grasses parallels emergence of distinctive primary cell wall traits. Plant J 81(1):108–120. doi:10.1111/tpj.12715

    CAS  PubMed  Google Scholar 

  • Scheurwater E, Reid CW, Clarke AJ (2008) Lytic transglycosylases: bacterial space-making autolysins. Internl J Biochem Cell Biol 40(4):586–591. doi:10.1016/j.biocel.2007.03.018

    CAS  Google Scholar 

  • Seki Y, Kikuchi Y, Yoshimoto R, Aburai K, Kanai Y, Ruike T, Iwabata K, Goitsuka R, Sugawara F, Abe M, Sakaguchi K (2014) Promotion of crystalline cellulose degradation by expansins from Oryza sativa. Planta. doi:10.1007/s00425-014-2163-6

    PubMed  Google Scholar 

  • Shcherban TY, Shi J, Durachko DM, Guiltinan MJ, Mcqueen-Mason SJ, Shieh M, Cosgrove DJ (1995) Molecular cloning and sequence analysis of expansins—a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc Natl Acad Sci U S A 92(20):9245–9249. doi:10.1073/pnas.92.20.9245

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70(2):283–295. doi:10.1128/MMBR. 00028-05

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suwannarangsee S, Bunterngsook B, Arnthong J, Paemanee A, Thamchaipenet A, Eurwilaichitr L, Laosiripojana N, Champreda V (2012) Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design. Bioresource Technol 119:252–261. doi:10.1016/j.biortech.2012.05.098

    CAS  Google Scholar 

  • Suzuki H, Vuong TV, Gong Y, Chan K, Ho CY, Master ER, Kondo A (2014) Sequence diversity and gene expression analyses of expansin-related proteins in the white-rot basidiomycete, Phanerochaete carnosa. Fungal Gen Biol 72:115–123. doi:10.1016/j.fgb.2014.05.008

    CAS  Google Scholar 

  • Tabuchi A, Li LC, Cosgrove DJ (2011) Matrix solubilization and cell wall weakening by beta-expansin (group-1 allergen) from maize pollen. Plant J68(3):546–559

    Google Scholar 

  • Takahashi H, Ayala I, Bardet M, De Paepe G, Simorre JP, Hediger S (2013) Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. J Am Chem Soc 135(13):5105–5110. doi:10.1021/ja312501d

    CAS  PubMed  Google Scholar 

  • Thimm JC, Burritt DJ, Sims IM, Newman RH, Ducker WA, Melton LD (2002) Celery (Apium graveolens) parenchyma cell walls: cell walls with minimal xyloglucan. Physiol Plant 116(2):164–171

    CAS  PubMed  Google Scholar 

  • Tovar-Herrera OE, Batista-Garcia RA, Sanchez-Carbente Mdel R, Iracheta-Cardenas MM, Arevalo-Nino K, Folch-Mallol JL (2015) A novel expansin protein from the white-rot fungus Schizophyllum commune. PLoS One 10(3):e0122296 doi:10.1371/journal.pone.0122296

  • van Straaten KE, Dijkstra BW, Vollmer W, Thunnissen AM (2005) Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold. J Mol Biol 352(5):1068–1080. doi:10.1016/j.jmb.2005.07.067

    PubMed  Google Scholar 

  • Veneault-Fourrey C, Commun C, Kohler A, Morin E, Balestrini R, Plett J, Danchin E, Coutinho P, Wiebenga A, de Vries RP, Henrissat B, Martin F (2014) Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Gen Biol 72:168–181. doi:10.1016/j.fgb.2014.08.007

    CAS  Google Scholar 

  • Wang Y, Tang R, Tao J, Gao G, Wang X, Mu Y, Feng Y (2011) Quantitative investigation of non-hydrolytic disruptive activity on crystalline cellulose and application to recombinant swollenin. Appl Microbiol Biotechnol 91(5):1353–1363. doi:10.1007/s00253-011-3421-1

    CAS  PubMed  Google Scholar 

  • Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M (2013) Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proc Natl Acad Sci U S A 110(41):16444–16449. doi:10.1073/pnas.1316290110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang WC, Liu C, Ma YY, Liu XW, Zhang K, Zhang MH (2014) Improved production of two expansin-like proteins in Pichia pastoris and investigation of their functional properties. Biochem Eng J 84:16–27. doi:10.1016/j.bej.2013.12.018

    CAS  Google Scholar 

  • Whitney SE, Gidley MJ, McQueen-Mason SJ (2000) Probing expansin action using cellulose/hemicellulose composites. Plant J 22(4):327–334

    CAS  PubMed  Google Scholar 

  • Wolf S, Hematy K, Hofte H (2012) Growth control and cell wall signaling in plants. Annu Rev Plant Biol 63:381–407. doi:10.1146/annurev-arplant-042811-105449

    CAS  PubMed  Google Scholar 

  • Yan Z, He M-X, Bo W, Hu Q-C, Li Q, Zhao J (2012) Recombinant EXLX1 from Bacillus subtilis for enhancing enzymatic hydrolysis of corn stover with low cellulase loadings. African J Biotech 11:11126–11131. doi:10.5897/AJB11.3395

    Google Scholar 

  • Yao Q, Sun TT, Liu WF, Chen GJ (2008) Gene cloning and heterologous expression of a novel endoglucanase, swollenin, from Trichoderma pseudokoningii S38. Biosci Biotechnol Biochem 72(11):2799–2805. doi:10.1271/bbb.80124

    CAS  PubMed  Google Scholar 

  • Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci U S A 103(40):14664–14671

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu H, Li L (2014) Phylogeny and molecular dating of the cerato-platanin-encoding genes. Gen Mol Biol 37(2):423–427

    CAS  Google Scholar 

  • Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove DJ (2014) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 21:853–862

  • Zhao Z, Shklyaev OE, Nili A, Mohamed MNA, Kubicki JD, Crespi VH, Zhong LH (2013) Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis. J Phys Chem A 117(12):2580–2589. doi:10.1021/Jp3089929

    CAS  PubMed  Google Scholar 

  • Zhao Z, Crespi VH, Kubicki JD, Cosgrove DJ, Zhong L (2014) Molecular dynamics simulation study of xyloglucan adsorption on cellulose surfaces: effects of surface hydrophobicity and side-chain variation. Cellulose 21:1025–1039. doi:10.1007/s10570-013-0041-1

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by United States Department of Energy Grant DE-FG02-84ER13179 to D.J.C. from the Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Cosgrove.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgelis, N., Nikolaidis, N. & Cosgrove, D.J. Bacterial expansins and related proteins from the world of microbes. Appl Microbiol Biotechnol 99, 3807–3823 (2015). https://doi.org/10.1007/s00253-015-6534-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6534-0

Keywords

Navigation