Applied Microbiology and Biotechnology

, Volume 99, Issue 9, pp 3787–3795 | Cite as

Proton transfer reaction–mass spectrometry: online and rapid determination of volatile organic compounds of microbial origin

  • Andrea Romano
  • Vittorio Capozzi
  • Giuseppe Spano
  • Franco Biasioli
Mini-Review

Abstract

Analytical tools for the identification and quantification of volatile organic compounds (VOCs) produced by microbial cultures have countless applications in an industrial and research context which are still not fully exploited. The various techniques for VOC analysis generally arise from the application of different scientific and technological philosophies, favoring either sample throughput or chemical information. Proton transfer reaction–mass spectrometry (PTR-MS) represents a valid compromise between the two aforementioned approaches, providing rapid and direct measurements along with highly informative analytical output. The present paper reviews the main applications of PTR-MS in the microbiological field, comprising food, environmental, and medical applications.

Keywords

Mass spectrometry PTR-MS Microorganism Volatile organic compound VOC Bacteria 

Supplementary material

253_2015_6528_MOESM1_ESM.pdf (713 kb)
ESM 1(PDF 712 kb)

References

  1. Abanda-Nkpwatt D, Musch M, Tschiersch J, Boettner M, Schwab W (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot 57:4025–4032CrossRefPubMedGoogle Scholar
  2. Bäck J, Aaltonen H, Hellén H, Kajos MK, Patokoski J, Taipale R, Pumpanen J, Heinonsalo J (2010) Variable emissions of microbial volatile organic compounds (MVOCs) from root-associated fungi isolated from Scots pine. Atmos Environ 44:3651–3659CrossRefGoogle Scholar
  3. Blake RS, Whyte C, Hughes CO, Ellis AM, Monks PS (2004) Demonstration of proton-transfer reaction time-of-flight mass spectrometry for real-time analysis of trace volatile organic compounds. Anal Chem 76:3841–3845CrossRefGoogle Scholar
  4. Blasioli S, Biondi E, Samudrala D, Spinelli F, Cellini A, Bertaccini A, Cristescu SM, Braschi I (2014) Identification of volatile markers in potato brown rot and ring rot by combined GC-MS and PTR-MS techniques: study on in vitro and in vivo samples. J Agr Food Chem 62:337–347CrossRefGoogle Scholar
  5. Borneman AR, Schmidt SA, Pretorius IS (2013) At the cutting-edge of grape and wine biotechnology. Trends Genet 29:263–271CrossRefPubMedGoogle Scholar
  6. Braden B, Lembcke B, Kuker W, Caspary WF (2007) 13C-breath tests: current state of the art and future directions. Dig Liver Dis 39:795–805CrossRefPubMedGoogle Scholar
  7. Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler A, Margesin R, Mark TD (2008) On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl Environ Microbiol 74:2179–2186CrossRefPubMedCentralPubMedGoogle Scholar
  8. Capozzi V, Spano G (2011) Food microbial biodiversity and “Microbes of Protected Origin”. Front Microbiol 2:237CrossRefPubMedCentralPubMedGoogle Scholar
  9. Capozzi V, Russo P, Beneduce L, Weidmann S, Grieco F, Guzzo J, Spano G (2010) Technological properties of Oenococcus oeni strains isolated from typical southern Italian wines. Lett Appl Microbiol 50:327–334CrossRefPubMedGoogle Scholar
  10. Crespo E, Cristescu SM, de Ronde H, Kuijper S, Kolk AHJ, Anthony RM, Harren FJM (2011) Proton transfer reaction mass spectrometry detects rapid changes in volatile metabolite emission by Mycobacterium smegmatis after the addition of specific antimicrobial agents. J Microbiol Methods 86:8–15CrossRefPubMedGoogle Scholar
  11. Critchley A, Elliott TS, Harrison G, Mayhew CA, Thompson JM, Worthington T (2004) The proton transfer reaction mass spectrometer and its use in medical science: applications to drug assays and the monitoring of bacteria. Int J Mass Spectrom 239:235–241CrossRefGoogle Scholar
  12. Di Toro MR, Capozzi V, Beneduce L, Alexandre H, Tristezza M, Durante M, Tufariello M, Grieco F, Spano G (2015) Intraspecific biodiversity and “spoilage potential” of Brettanomyces bruxellensis in Apulian wines. LWT-Food Sci Technol 60:102–108CrossRefGoogle Scholar
  13. Dickschat JS, Martens T, Brinkhoff T, Simon M, Schulz S (2005) Volatiles Released by a Streptomyces Species Isolated from the North Sea. Chem Biodivers 2:837–865CrossRefPubMedGoogle Scholar
  14. Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703CrossRefPubMedGoogle Scholar
  15. Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W (1995) Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. Int J Mass Spectrom 149–150:609–619CrossRefGoogle Scholar
  16. Heddergott C, Calvo AM, Latgé JP (2014) The volatome of Aspergillus fumigatus. Eukaryotic Cell 13:1014–1025CrossRefPubMedCentralPubMedGoogle Scholar
  17. Jaksch D, Margesin R, Mikoviny T, Skalny JD, Hartungen E, Schinner F, Mason NJ, Märk TD (2004) The effect of ozone treatment on the microbial contamination of pork meat measured by detecting the emissions using PTR-MS and by enumeration of microorganisms. Int J Mass Spectrom 239:209–214CrossRefGoogle Scholar
  18. Jolly NP, Varela C, Pretorius IS (2014) Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res 14:215–237CrossRefPubMedGoogle Scholar
  19. Jordan A, Haidacher S, Hanel G, Hartungen E, Märk L, Seehauser H, Schottkowsky R, Sulzer P, Märk TD (2009) A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Int J Mass Spectrom 286:122–128CrossRefGoogle Scholar
  20. Jünger M, Vautz W, Kuhns M, Hofmann L, Ulbricht S, Baumbach JI, Quintel M, Perl T (2012) Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria. Appl Microbiol Biotechnol 93:2603–2614CrossRefPubMedCentralPubMedGoogle Scholar
  21. Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360CrossRefPubMedGoogle Scholar
  22. Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012CrossRefPubMedGoogle Scholar
  23. Kai M, Crespo E, Cristescu SM, Harren FJM, Francke W, Piechulla B (2010) Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol 88:965–976CrossRefPubMedGoogle Scholar
  24. Kim JL, Elfman L, Mi Y, Wieslander G, Smedje G, Norbäck D (2007) Indoor molds, bacteria, microbial volatile organic compounds and plasticizers in schools – associations with asthma and respiratory symptoms in pupils. Indoor Air 17:153–163CrossRefPubMedGoogle Scholar
  25. Kim TG, Lee E-H, Cho K-S (2012) Effects of nonmethane volatile organic compounds on microbial community of methanotrophic biofilter. Appl Microbiol Biotechnol 97:6549–6559CrossRefPubMedGoogle Scholar
  26. Korpi A, Järnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193CrossRefPubMedGoogle Scholar
  27. Kuppusami S, Clokie MRJ, Panayi T, Ellis AM, Monks PS (2015) Metabolite profiling of Clostridium difficile ribotypes using small molecular weight volatile organic compounds. Metabolomics 11:251–260Google Scholar
  28. Kviatkovski I, Chernin L, Yarnitzky T, Frumin I, Sobel N, Helman Y (2015) Pseudomonas aeruginosa activates the quorum sensing LuxR response regulator through secretion of 2-aminoacetophenone. Chem Commun. doi:10.1039/C4CC10393A Google Scholar
  29. Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucl Acids Res 42:D744–D748CrossRefPubMedCentralPubMedGoogle Scholar
  30. Lindinger W, Jordan A (1998) Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels. Chem Soc Rev 27:347CrossRefGoogle Scholar
  31. Luchner M, Gutmann R, Bayer K, Dunkl J, Hansel A, Herbig J, Singer W, Strobl F, Winkler K, Striedner G (2012) Implementation of proton transfer reaction-mass spectrometry (PTR-MS) for advanced bioprocess monitoring. Biotechnol Bioprocess Eng 109:3059–3069Google Scholar
  32. Makhoul S, Romano A, Cappellin L, Spano G, Capozzi V, Benozzi E, Märk TD, Aprea E, Gasperi F, El-Nakat H, Guzzo J, Biasioli F (2014) Proton-transfer-reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters: PTR-MS study of bakery yeast starters. J Mass Spectrom 49:850–859CrossRefPubMedGoogle Scholar
  33. Mallette ND, Knighton WB, Strobel GA, Carlson RP, Peyton BM (2012) Resolution of volatile fuel compound profiles from Ascocoryne sarcoides: a comparison by proton transfer reaction-mass spectrometry and solid phase microextraction gas chromatography-mass spectrometry. AMB Express 2:23CrossRefPubMedCentralPubMedGoogle Scholar
  34. Mayr D, Margesin R, Klingsbichel E, Hartungen E, Jenewein D, Schinner F, Mark TD (2003a) Rapid detection of meat spoilage by measuring volatile organic compounds by using proton transfer reaction mass spectrometry. Appl Environ Microbiol 69:4697–4705CrossRefPubMedCentralPubMedGoogle Scholar
  35. Mayr D, Margesin R, Schinner F, Märk T (2003b) Detection of the spoiling of meat using PTR–MS. Int J Mass Spectrom 223–224:229–235CrossRefGoogle Scholar
  36. Mayrhofer S, Mikoviny T, Waldhuber S, Wagner AO, Innerebner G, Franke-Whittle IH, Märk TD, Hansel A, Insam H (2006) Microbial community related to volatile organic compound (VOC) emission in household biowaste. Environ Microbiol 8:1960–1974CrossRefPubMedGoogle Scholar
  37. Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol 76:342–351CrossRefPubMedGoogle Scholar
  38. Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26:73–83CrossRefGoogle Scholar
  39. Nawrath T, Mgode GF, Weetjens B, Kaufmann SHE, Schulz S (2012) The volatiles of pathogenic and nonpathogenic mycobacteria and related bacteria. Beilstein J Org Chem 8:290–299CrossRefPubMedCentralPubMedGoogle Scholar
  40. O’Hara M, Mayhew CA (2009) A preliminary comparison of volatile organic compounds in the headspace of cultures of Staphylococcus aureus grown in nutrient, dextrose and brain heart bovine broths measured using a proton transfer reaction mass spectrometer. J Breath Res 3:027001CrossRefPubMedGoogle Scholar
  41. Özdestan Ö, van Ruth SM, Alewijn M, Koot A, Romano A, Cappellin L, Biasioli F (2013) Differentiation of specialty coffees by proton transfer reaction-mass spectrometry. Food Res Int 53:433–439CrossRefGoogle Scholar
  42. Pagans E, Font X, Sánchez A (2006) Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration. J Hazard Mater 131:179–186CrossRefPubMedGoogle Scholar
  43. Papurello D, Soukoulis C, Schuhfried E, Cappellin L, Gasperi F, Silvestri S, Santarelli M, Biasioli F (2012) Monitoring of volatile compound emissions during dry anaerobic digestion of the organic fraction of municipal solid waste by Proton Transfer Reaction Time-of-Flight Mass Spectrometry. Bioresour Technol 126:254–265CrossRefPubMedGoogle Scholar
  44. Rabe P, Citron CA, Dickschat JS (2013) Volatile terpenes from actinomycetes: a biosynthetic study correlating chemical analyses to genome data. Chembiochem 14:2345–2354CrossRefPubMedGoogle Scholar
  45. Schmidberger T, Gutmann R, Bayer K, Kronthaler J, Huber R (2014) Advanced online monitoring of cell culture off-gas using proton transfer reaction mass spectrometry. Biotechnol Progr 30:496–504CrossRefGoogle Scholar
  46. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842CrossRefPubMedGoogle Scholar
  47. Seewald MSA, Singer W, Knapp BA, Franke-Whittle IH, Hansel A, Insam H (2010) Substrate-induced volatile organic compound emissions from compost-amended soils. Biol Fert Soils 46:371–382CrossRefGoogle Scholar
  48. Silcock P, Alothman M, Zardin E, Heenan S, Siefarth C, Bremer PJ, Beauchamp J (2014) Microbially induced changes in the volatile constituents of fresh chilled pasteurised milk during storage. Food Packaging and Shelf Life 2:81–90CrossRefGoogle Scholar
  49. Soukoulis C, Aprea E, Biasioli F, Cappellin L, Schuhfried E, Märk TD, Gasperi F (2010) Proton transfer reaction time-of-flight mass spectrometry monitoring of the evolution of volatile compounds during lactic acid fermentation of milk. Rapid Commun Mass Spectrom 24:2127–2134CrossRefPubMedGoogle Scholar
  50. Splivallo R, Ebeler SE (2015) Sulfur volatiles of microbial origin are key contributors to human-sensed truffle aroma. Appl Microbiol Biotechnol 99:2583–92Google Scholar
  51. Stotzky G, Schenck S (1976) Volatile organic compounds and microorganisms. CRC Crit Rev Microbiol 4:333–382CrossRefPubMedGoogle Scholar
  52. Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328CrossRefPubMedGoogle Scholar
  53. Sumby KM, Grbin PR, Jiranek V (2014) Implications of new research and technologies for malolactic fermentation in wine. Appl Microbiol Biotechnol 98:8111–8132CrossRefPubMedGoogle Scholar
  54. Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS (2005) Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine Res 11:139–173CrossRefGoogle Scholar
  55. Tait E, Perry JD, Stanforth SP, Dean JR (2014) Bacteria detection based on the evolution of enzyme-generated volatile organic compounds: Determination of Listeria monocytogenes in milk samples. Anal Chim Acta 848:80–87CrossRefPubMedGoogle Scholar
  56. Thorn RMS, Greenman J (2012) Microbial volatile compounds in health and disease conditions. J Breath Res 6:024001CrossRefPubMedGoogle Scholar
  57. Tristezza M, Vetrano C, Bleve G, Spano G, Capozzi V, Logrieco A, Mita G, Grieco F (2013) Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol 36:335–342CrossRefPubMedGoogle Scholar
  58. Tsevdou M, Soukoulis C, Cappellin L, Gasperi F, Taoukis PS, Biasioli F (2013) Monitoring the effect of high pressure and transglutaminase treatment of milk on the evolution of flavour compounds during lactic acid fermentation using PTR-ToF-MS. Food Chem 138:2159–2167CrossRefPubMedGoogle Scholar
  59. Weise T, Kai M, Gummesson A, Troeger A, von Reuß S, Piepenborn S, Kosterka F, Sklorz M, Zimmermann R, Francke W, Piechulla B (2012) Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10. Beilstein J Org Chem 8:579–596CrossRefPubMedCentralPubMedGoogle Scholar
  60. Zehm S, Schweinitz S, Würzner R, Colvin HP, Rieder J (2012) Detection of Candida albicans by mass spectrometric fingerprinting. Curr Microbiol 64:271–275CrossRefPubMedGoogle Scholar
  61. Zoller HF, Clark WM (1921) The production of volatile fatty acids by bacteria of the dysentery group. J Gen Physiol 3:325–330CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrea Romano
    • 1
  • Vittorio Capozzi
    • 2
  • Giuseppe Spano
    • 2
  • Franco Biasioli
    • 1
  1. 1.Department of Food Quality and Nutrition, Research and Innovation CentreFondazione Edmund Mach (FEM)San Michele all’AdigeItaly
  2. 2.Department of Agriculture, Food and Environmental SciencesUniversity of FoggiaFoggiaItaly

Personalised recommendations