Applied Microbiology and Biotechnology

, Volume 99, Issue 18, pp 7549–7558 | Cite as

Optimization of recombinant expression enables discovery of novel cytochrome P450 activity in rice diterpenoid biosynthesis

  • Naoki Kitaoka
  • Yisheng Wu
  • Meimei Xu
  • Reuben J. PetersEmail author
Biotechnologically relevant enzymes and proteins


The oxygenation reactions catalyzed by cytochromes P450 (CYPs) play critical roles in plant natural products biosynthesis. At the same time, CYPs are one of most challenging enzymes to functionally characterize due to the difficulty of recombinantly expressing these membrane-associated monooxygenases. In the course of investigating rice diterpenoid biosynthesis, we have developed a synthetic biology approach for functional expression of relevant CYPs in Escherichia coli. In certain cases, activity was observed for only one of two closely related paralogs although it seems clear that related reactions are required for production of the known diterpenoids. Here, we report that optimization of the recombinant expression system enabled characterization of not only these previously recalcitrant CYPs, but also discovery of additional activity relevant to rice diterpenoid biosynthesis. Of particular interest, CYP701A8 was found to catalyze 3β-hydroxylation of syn-pimaradiene, which is presumably relevant to momilactone biosynthesis, while CYP71Z6 & 7 were found to catalyze multiple reactions, with CYP71Z6 catalyzing the production of 2α,3α-dihydroxy-ent-isokaurene via 2α-hydroxy-ent-isokaurene, and CYP71Z7 catalyzing the production of 3α-hydroxy-ent-cassadien-2-one via 2α-hydroxy-ent-cassadiene and ent-cassadien-2-one, which may be relevant to oryzadione and phytocassane biosynthesis, respectively.


Metabolic engineering Natural products Labdane-related diterpenoids Phytoalexin Antibiotic Evolution 



This work was supported by grants from the USDA (AFRI-NIFA 2014-67013-21720) and NIH (GM076324), and funds from Iowa State University, to R.J.P.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2015_6496_MOESM1_ESM.pdf (377 kb)
ESM 1 (PDF 377 kb)


  1. Atawong A, Hasegawa M, Kodama O (2002) Biosynthesis of rice phytoalexin: enzymatic conversion of 3ß-hydroxy-9ß-pimara-7,15-dien-19,6ß-olide to momilactone A. Biosci Biotechnol Biochem 66(3):566–570CrossRefPubMedGoogle Scholar
  2. Cyr A, Wilderman PR, Determan M, Peters RJ (2007) A modular approach for facile biosynthesis of labdane-related diterpenes. J Am Chem Soc 129:6684–6685PubMedCentralCrossRefPubMedGoogle Scholar
  3. Hamberger B, Bak S (2013) Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Philos Trans R Soc Lond Ser B Biol Sci 368(1612):20120426 doi: 10.1098/rstb.2012.0426
  4. Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M (2004) A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol 54:533–547CrossRefPubMedGoogle Scholar
  5. Kitaoka N, Lu X, Yang B, Peters RJ (2015) The application of synthetic biology to elucidation of plant mono-, sesqui-, and diterpenoid metabolism. Mol Plant 8(1):6–16Google Scholar
  6. Kono Y, Kojima A, Nagai R, Watanabe M, Kawashima T, Onizawa T, Teraoka T, Watanab M, Koshino H, Uzawa J, Suzuki Y, Sakurai A (2004) Antibacterial diterpenes and their fatty acid conjugates from rice leaves. Phytochemistry 65(9):1291–1298. doi: 10.1016/j.phytochem.2004.03.016 CrossRefPubMedGoogle Scholar
  7. Mizutani M, Ohta D (1998) Two isoforms of NADPH: cytochrome P450 reductase in Arabidopsis thaliana. Gene structure, heterologous expression in insect cells, and differential regulation. Plant Physiol 116:357–367Google Scholar
  8. Mizutani M, Sato F (2011) Unusual P450 reactions in plant secondary metabolism. Arch Biochem Biophys 507(1):194–203. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  9. Morrone D, Chen X, Coates RM, Peters RJ (2010a) Characterization of the kaurene oxidase CYP701A3, a multifunctional cytochrome P450 from gibberellin biosynthesis. Biochem J 431(3):337–344. doi: 10.1042/BJ20100597 CrossRefPubMedGoogle Scholar
  10. Morrone D, Lowry L, Determan MK, Hershey DM, Xu M, Peters RJ (2010b) Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering. Appl Microbiol Biotechnol 85:1893–1906PubMedCentralCrossRefPubMedGoogle Scholar
  11. Okada K (2011) The biosynthesis of isoprenoids and the mechanisms regulating it in plants. Biosci Biotechnol Biochem 75(7):1219–1225CrossRefPubMedGoogle Scholar
  12. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsome II. Solubilization, purification, and properties. J Biol Chem 239:2379–2385PubMedGoogle Scholar
  13. Peters RJ (2010) Two rings in them all: the labdane-related diterpenoids. Nat Prod Rep 27(11):1521–1530. doi: 10.1039/C0NP00019A PubMedCentralCrossRefPubMedGoogle Scholar
  14. Podust LM, Sherman DH (2012) Diversity of P450 enzymes in the biosynthesis of natural products. Nat Prod Rep 29(10):1251–1266. doi: 10.1039/c2np20020a PubMedCentralCrossRefPubMedGoogle Scholar
  15. Prisic S, Xu M, Wilderman PR, Peters RJ (2004) Rice contains two disparate ent-copalyl diphosphate synthases with distinct metabolic functions. Plant Physiol 136(4):4228–4236PubMedCentralCrossRefPubMedGoogle Scholar
  16. Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X, Okada K, Peters RJ (2014) Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J 79(4):659–678. doi: 10.1111/tpj.12436 CrossRefPubMedGoogle Scholar
  17. Shimura K, Okada A, Okada K, Jikumaru Y, Ko K-W, Toyomasu T, Sassa T, Hasegawa M, Kodama O, Shibuya N, Koga J, Nojiri H, Yamane H (2007) Identification of a biosynthetic gene cluster in rice for momilactones. J Biol Chem 282:34013–34018CrossRefPubMedGoogle Scholar
  18. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96(7):2841–2888CrossRefPubMedGoogle Scholar
  19. Swaminathan S, Morrone D, Wang Q, Fulton DB, Peters RJ (2009) CYP76M7 is an ent-cassadiene C11α-hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. Plant Cell 21:3315–3325PubMedCentralCrossRefPubMedGoogle Scholar
  20. Urban P, Mignotte C, Kazmaier M, Delorme F, Pompon D (1997) Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A5. J Biol Chem 272(31):19176–19186CrossRefPubMedGoogle Scholar
  21. Wang Q, Hillwig ML, Peters RJ (2011) CYP99A3: functional identification of a diterpene oxidase from the momilactone biosynthetic gene cluster in rice. Plant J 65(1):87–95PubMedCentralCrossRefPubMedGoogle Scholar
  22. Wang Q, Hillwig ML, Okada K, Yamazaki K, Wu Y, Swaminathan S, Yamane H, Peters RJ (2012a) Characterization of CYP76M5-8 indicates metabolic plasticity within a plant biosynthetic gene cluster. J Biol Chem 287(9):6159–6168PubMedCentralCrossRefPubMedGoogle Scholar
  23. Wang Q, Hillwig ML, Wu Y, Peters RJ (2012b) CYP701A8: a rice ent-kaurene oxidase paralog diverted to more specialized diterpenoid metabolism. Plant Physiol 158(3):1418–1425PubMedCentralCrossRefPubMedGoogle Scholar
  24. Watanabe M, Kono Y, Uzawa J, Teraoka T, Hosokawa D, Suzuki Y, Sakurai A, Teraguchi M (1992) Structures of oryzalic acid B and three related compounds, a group of novel antibacterial diterpenes, isolated from leaves of a bacterial leaf blight-resistant cultivar of rice. Biosci Biotechnol Biochem 56:113–117CrossRefGoogle Scholar
  25. Wilderman PR, Xu M, Jin Y, Coates RM, Peters RJ (2004) Identification of syn-pimara-7,15-diene synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis. Plant Physiol 135(4):2098–2105PubMedCentralCrossRefPubMedGoogle Scholar
  26. Wu Y, Hillwig ML, Wang Q, Peters RJ (2011) Parsing a multifunctional biosynthetic gene cluster from rice: biochemical characterization of CYP71Z6 & 7. FEBS Lett 585:3446–3451PubMedCentralCrossRefPubMedGoogle Scholar
  27. Wu Y, Wang Q, Hillwig ML, Peters RJ (2013) Picking sides: distinct roles for CYP76M6 and -8 in rice oryzalexin biosynthesis. Biochem J 454(2):209–216PubMedCentralCrossRefPubMedGoogle Scholar
  28. Zi J, Peters RJ (2013) Characterization of CYP76AH4 clarifies phenolic diterpenoid biosynthesis in the Lamiaceae. Org Biomol Chem 11(44):7650–7652. doi: 10.1039/c3ob41885e PubMedCentralCrossRefPubMedGoogle Scholar
  29. Zi J, Mafu S, Peters RJ (2014a) To gibberellins and beyond! Surveying the evolution of (Di)terpenoid metabolism. Annu Rev Plant Biol 65:259–286. doi: 10.1146/annurev-arplant-050213-035705 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Zi J, Matsuba Y, Hong Y, Jackson A, Pichersky E, Tantillo DJ, Peters RJ (2014b) Biosynthesis of lycosantalonol, a cis-prenyl derived diterpenoid. J Am Chem Soc 136:16951–16953CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Naoki Kitaoka
    • 1
    • 2
  • Yisheng Wu
    • 1
    • 3
  • Meimei Xu
    • 1
  • Reuben J. Peters
    • 1
    Email author
  1. 1.Department of Biochemistry, Biophysics, and Molecular BiologyIowa State UniversityAmesUSA
  2. 2.Tohoku UniversitySendaiJapan
  3. 3.Conagen Inc.BedfordUSA

Personalised recommendations