Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 14, pp 6125–6137 | Cite as

Archaeal community diversity in municipal waste landfill sites

  • Liyan SongEmail author
  • Yangqing Wang
  • Wei Tang
  • Yu Lei
Environmental biotechnology

Abstract

Despite the pivotal role of archaea in methane production in landfills, the identity, ecology, and functional diversity of these microorganisms and their link to environmental factors remain largely unknown. We collected 11 landfill leachate samples from six geographically distinct landfills of different ages in China and analyzed the archaeal community by bar-coded 454 pyrosequencing. We retrieved 121,797 sequences from a total of 167,583 sequences (average length of 464 bp). The archaeal community was geographically structured, and nonabundant taxa primarily contributed to the observed dissimilarities. Canonical correlation analysis (CCA) suggested that the total phosphorous (TP), nitrate, and conductivity are important drivers for shaping the archaeal community. The hydrogenotrophic methanogens Methanomicrobiales and Methanobacteriales greatly dominated 9 of 11 samples, ranging from 83.7 to 99.5 %. These methanogens also dominated the remaining two samples, accounting for 70.3 and 58.8 %, respectively. Interestingly, for all of the studied Chinese landfills, 16S rRNA analysis indicated the predominance of hydrogenotrophic methanogens.

Keywords

Landfill Landfill leachate Archaeal community Hydrogenotrophic methanogenesis 

Notes

Acknowledgments

The authors acknowledge the Chinese Academy of Science, China, for financial support of the research, under contract number KZCX2-XB3-14. We thank the anonymous reviewers for offering critical suggestions, which greatly improved the manuscript.

Supplementary material

253_2015_6493_MOESM1_ESM.pdf (911 kb)
ESM 1 (PDF 910 kb)

References

  1. Ahring BK (1995) Methanogenesis in thermophilic biogas reactors. Antonie Van Leeuwenhoek 67:91–102. doi: 10.1007/BF00872197 PubMedCrossRefGoogle Scholar
  2. Ahring BK, Ibrahim AA, Mladenovska Z (2001) Effect of temperature increase from 55 to 65 °C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Res 35:2446–2452. doi: 10.1016/S0043-1354(00)00526-1 PubMedCrossRefGoogle Scholar
  3. APHA (1998) Standard methods for the evaluation of water and wastewater. American Public Health Association Publishing, WashingtonGoogle Scholar
  4. Balk M, Weijma J, Stams AJ (2002) Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol 52:1361–1368. doi: 10.1099/ijs. 0.02165-0 PubMedCrossRefGoogle Scholar
  5. Barlaz MA (1997) Microbial studies of landfills and anaerobic refuse decomposition. Manual of environmental microbiology. ASM Press, Washington DC, pp 541–557Google Scholar
  6. Barlaz MA (2006) Forest products decomposition in municipal solid waste landfills. Waste Manag 26:321–333. doi: 10.1016/j.wasman.2005.11.002 PubMedCrossRefGoogle Scholar
  7. Barlaz MA, Schaefer DM, Ham RK (1989) Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Appl Environ Microbiol 55:55–65PubMedCentralPubMedGoogle Scholar
  8. Boer SI, Hedtkamp SIC, van Beusekom JEE, Fuhrman JA, Boetius A, Ramette A (2009) Time and sediment depth-related variations in bacterial diversity and community structure in subtidal sands. ISME J 3:780–791. doi: 10.1038/ismej.2009.29 PubMedCrossRefGoogle Scholar
  9. Bolhuis H, Stal LJ (2011) Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J 5:1701–1712. doi: 10.1038/ismej.2011.52 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Braak CJ, FtaŠ P (2002) CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canocical Community Ordination. version 4.5Google Scholar
  11. Caron DA (1994) Inorganic nutrients, bacteria, and the microbial loop. Microb Ecol 28:295–298. doi: 10.1007/bf00166820 PubMedCrossRefGoogle Scholar
  12. Chen ACIH, Sekiguchi Y, Ohashi A, Harada H (2003) Archaeal community compositions at different depths (up to 30 m) of a municipal solid waste landfill in Taiwan as revealed by 16S rDNA cloning analyses. Biotechnol Lett 25:719–724. doi: 10.1023/A:1023458631699 PubMedCrossRefGoogle Scholar
  13. Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202. doi: 10.1111/j.1574-6941.1999.tb00575.x CrossRefGoogle Scholar
  14. Conrad R, Klose M (2006) Dynamics of the methanogenic archaeal community in anoxic rice soil upon addition of straw. Eur J Soi Sci 57:476–484. doi: 10.1111/j.1365-2389.2006.00791.x CrossRefGoogle Scholar
  15. Czepiel PM, Shorter JH, Mosher B, Allwine E, McManus JB, Harriss RC, Kolb CE, Lamb BK (2003) The influence of atmospheric pressure on landfill methane emissions. Waste Manag 23:593–598. doi: 10.1016/S0956-053X(03)00103-X PubMedCrossRefGoogle Scholar
  16. Downing JA, Osenberg CW, Sarnelle O (1999) Meta-analysis of marine nutrient-enrichment experiments: variation in the magnitude of nutrient limitation. Ecology 80:1157–1167. doi: 10.1890/0012-9658(1999)080[1157:maomne]2.0.co;2 CrossRefGoogle Scholar
  17. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi: 10.1093/bioinformatics/btr381 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Fairweather RJ, Barlaz MA (1998) Hydrogen sulfide production during decomposition of landfill inputs. J Environ Eng 124:353–361. doi: 10.1061/(ASCE)0733-9372(1998)124:4(353) CrossRefGoogle Scholar
  19. Fey A, Conrad R (2000) Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl Environ Microbiol 66:4790–4797. doi: 10.1128/aem. 66.11.4790-4797.2000 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Fisher MM, Klug JL, Lauster G, Newton M, Triplett EW (2000) Effects of resources and trophic interactions on freshwater bacterioplankton diversity. Microb Ecol 40:125–138. doi: 10.1007/s002480000049 PubMedGoogle Scholar
  21. Garrity GM, Holt JG (2001) Phylum AII. Euryarchaeota phy. nov Bergey’s Manual® of Systematic Bacteriology. Springer, p 211-355Google Scholar
  22. Griffin ME, McMahon KD, Mackie RI, Raskin L (1998) Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng 57:342–355PubMedCrossRefGoogle Scholar
  23. He P-J, Qu X, Shao L-M, Li G-J, Lee D-J (2007) Leachate pretreatment for enhancing organic matter conversion in landfill bioreactor. J Hazard Mater 142:288–296. doi: 10.1016/j.jhazmat.2006.08.017 PubMedCrossRefGoogle Scholar
  24. Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58. doi: 10.1007/BF00048870 CrossRefGoogle Scholar
  25. Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2006) Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol 72:1623–1630. doi: 10.1128/aem. 72.2.1623-1630.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Huang LNZH, Chen YQ, Luo S, Lan CY, Qu LH (2002) Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval. FEMS Microbiol Lett 214:235–240. doi: 10.1111/j.1574-6968.2002.tb11353.x PubMedCrossRefGoogle Scholar
  27. Huang L-N, Chen Y-Q, Zhou H, Luo S, Lan C-Y, Qu L-H (2003) Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol 46:171–177. doi: 10.1016/s0168-6496(03)00218-6 PubMedCrossRefGoogle Scholar
  28. Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of methanosaetaceae. Appl Environ Microbiol 72:5138–5141. doi: 10.1128/aem. 00489-06 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336. doi: 10.1080/10643380290813462 CrossRefGoogle Scholar
  30. Krakat N, Westphal A, Schmidt S, Scherer P (2010) Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics. Appl Environ Microbiol 76:1842–1850. doi: 10.1128/aem. 02397-09 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Krishnamurthi S, Chakrabarti T (2013) Diversity of bacteria and archaea from a landfill in Chandigarh, India as revealed by culture-dependent and culture-independent molecular approaches. Syst Appl Microbiol 36:56–68. doi: 10.1016/j.syapm.2012.08.009 PubMedCrossRefGoogle Scholar
  32. Kröber M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Runte KJ, Viehöver P, Pühler A, Schlüter A (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142:38–49. doi: 10.1016/j.jbiotec.2009.02.010 PubMedCrossRefGoogle Scholar
  33. Laloui-Carpentier W, Li T, Vigneron V, Mazéas L, Bouchez T (2006) Methanogenic diversity and activity in municipal solid waste landfill leachates. Anton Leeuw 89:423–434. doi: 10.1007/s10482-005-9051-9 CrossRefGoogle Scholar
  34. Langenheder S, Ragnarsson H (2007) The role of environmental and spatial factors for the composition of aquatic bacterial communities. Ecology 88:2154–2161. doi: 10.1890/06-2098.1 PubMedCrossRefGoogle Scholar
  35. Leclerc M, Delgènes J-P, Godon J-J (2004) Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environ Microbiol 6:809–819. doi: 10.1111/j.1462-2920.2004.00616.x PubMedCrossRefGoogle Scholar
  36. Logue JB, Lindstrom ES (2010) Species sorting affects bacterioplankton community composition as determined by 16S rDNA and 16S rRNA fingerprints. ISME J 4:729–738. doi: 10.1038/ismej.2009.156 PubMedCrossRefGoogle Scholar
  37. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209PubMedGoogle Scholar
  38. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799PubMedCentralPubMedGoogle Scholar
  39. McArthur JV, Kovacic DA, Smith MH (1988) Genetic diversity in natural populations of a soil bacterium across a landscape gradient. Proc Natl Acad Sci USA 85:9621–9624PubMedCentralPubMedCrossRefGoogle Scholar
  40. McDonald JE, Allison HE, McCarthy AJ (2010) Composition of the landfill microbial community as determined by application of domain- and group-specific 16S and 18S rRNA-Targeted oligonucleotide probes. Appl Environ Microbiol 76:1301–1306. doi: 10.1128/aem. 01783-09 PubMedCentralPubMedCrossRefGoogle Scholar
  41. McHugh S, Carton M, Mahony T, O'Flaherty V (2003) Methanogenic population structure in a variety of anaerobic bioreactors. FEMS Microbiol Lett 219:297–304. doi: 10.1016/s0378-1097(03)00055-7 PubMedCrossRefGoogle Scholar
  42. McHugh S, Carton M, Collins G, O'Flaherty V (2004) Reactor performance and microbial community dynamics during anaerobic biological treatment of wastewaters at 16–37 °C. FEMS Microbiol Ecol 48:369–378. doi: 10.1016/j.femsec.2004.02.012 PubMedGoogle Scholar
  43. Nettmann E, Bergmann I, Pramschüfer S, Mundt K, Plogsties V, Herrmann C, Klocke M (2010) Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants. Appl Environ Microb 76:2540–2548. doi: 10.1128/aem. 01423-09 CrossRefGoogle Scholar
  44. Pender S, Toomey M, Carton M, Eardly D, Patching JW, Colleran E, O’Flaherty V (2004) Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors. Water Res 38:619–630. doi: 10.1016/j.watres.2003.10.055 PubMedCrossRefGoogle Scholar
  45. Qu X, Mazéas L, Vavilin VA, Epissard J, Lemunier M, Mouchel JM, Pj H, Bouchez T (2009) Combined monitoring of changes in δ13CH4 and archaeal community structure during mesophilic methanization of municipal solid waste. FEMS Microbiol Ecol 68:236–245. doi: 10.1111/j.1574-6941.2009.00661.x PubMedCrossRefGoogle Scholar
  46. Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240PubMedCentralPubMedGoogle Scholar
  47. Schnürer A, Houwen FP, Svensson BH (1994) Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration. Arch Microbiol 162:70–74. doi: 10.1007/BF00264375 CrossRefGoogle Scholar
  48. Schnürer A, Schink B, Svensson BH (1996) Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46:1145–1152. doi: 10.1099/00207713-46-4-1145 PubMedCrossRefGoogle Scholar
  49. Schnürer A, Zellner G, Svensson BH (1999) Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Microbiol Ecol 29:249–261. doi: 10.1111/j.1574-6941.1999.tb00616.x CrossRefGoogle Scholar
  50. Shen J-P, Cao P, Hu H-W, He J-Z (2013) Differential response of archaeal groups to land use change in an acidic red soil. Sci Total Environ 461–462:742–749. doi: 10.1016/j.scitotenv.2013.05.070 PubMedCrossRefGoogle Scholar
  51. Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15:150–155. doi: 10.1016/j.tim.2007.02.002 PubMedCrossRefGoogle Scholar
  52. Song L-Y, Wang Y-Q (2015) Investigation of microbial community structure of a shallow lake after one season copper sulfate algaecide treatment. Microbiol Res 170:105–113. doi: 10.1016/j.micres.2014.08.008 PubMedCrossRefGoogle Scholar
  53. State Environmental Protection Administration C (2002) Monitoring and analysis method of water and waste water, 4th edn. China Environmental Science Press, BeijingGoogle Scholar
  54. Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591. doi: 10.1038/nrmicro1931 PubMedCrossRefGoogle Scholar
  55. Uz I, Rasche M, Townsend T, Ogram A, Lindner A (2003) Characterization of methanogenic and methanotrophic assemblages in landfill samples. Proc Roy Soc Lond B Biol 270:S202–S205. doi: 10.1098/rsbl.2003.0061 CrossRefGoogle Scholar
  56. Van Dyke MI, McCarthy AJ (2002) Molecular biological detection and characterization of clostridium populations in municipal landfill sites. Appl Environ Microbiol 68:2049–2053. doi: 10.1128/aem. 68.4.2049-2053.2002 PubMedCentralPubMedCrossRefGoogle Scholar
  57. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi: 10.1128/aem. 00062-07 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Winter JU, Wolfe RS (1980) Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch Microbiol 124:73–79. doi: 10.1007/BF00407031 PubMedCrossRefGoogle Scholar
  59. Zhang T, Shao M-F, Ye L (2011) 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6:1137–1147. doi: 10.1038/ismej.2011.188 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Zhao Y, Liu J, Huang R, Gu G (2000) Long-term monitoring and prediction for leachate concentrations in Shanghai refuse landfill. Water Air Soil Pollut 122:281–297. doi: 10.1023/a:1005235714688 CrossRefGoogle Scholar
  61. Zhao Y, Song L, Huang R, Song L, Li X (2007) Recycling of aged refuse from a closed landfill. Waste Manag Res 25:130–138. doi: 10.1177/0734242x07074053 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Research Center of Environmental Microbiology and Ecology, Chongqing Institute of Green and Intelligent TechnologyChinese Academy of ScienceChongqingChina

Personalised recommendations