Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 9, pp 3825–3837 | Cite as

Experimental design-aided systematic pathway optimization of glucose uptake and deoxyxylulose phosphate pathway for improved amorphadiene production

  • Congqiang Zhang
  • Ruiyang Zou
  • Xixian Chen
  • Gregory Stephanopoulos
  • Heng-Phon Too
Biotechnological products and process engineering

Abstract

Artemisinin is a potent antimalarial drug; however, it suffers from unstable and insufficient supply from plant source. Here, we established a novel multivariate-modular approach based on experimental design for systematic pathway optimization that succeeded in improving the production of amorphadiene (AD), the precursor of artemisinin, in Escherichia coli. It was initially found that the AD production was limited by the imbalance of glyceraldehyde 3-phosphate (GAP) and pyruvate (PYR), the two precursors of the 1-deoxy-d-xylulose-5-phosphate (DXP) pathway. Furthermore, it was identified that GAP and PYR could be balanced by replacing the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) with the ATP-dependent galactose permease and glucose kinase system (GGS) and this resulted in fivefold increase in AD titer (11 to 60 mg/L). Subsequently, the experimental design-aided systematic pathway optimization (EDASPO) method was applied to systematically optimize the transcriptional expressions of eight critical genes in the glucose uptake and the DXP and AD synthesis pathways. These genes were classified into four modules and simultaneously controlled by T7 promoter or its variants. A regression model was generated using the four-module experimental data and predicted the optimal expression ratios among these modules, resulting in another threefold increase in AD titer (60 to 201 mg/L). This EDASPO method may be useful for the optimization of other pathways and products beyond the scope of this study.

Keywords

Amorphadiene Experimental design-aided systematic pathway optimization Multivariate-modular approach Deoxyxylulose phosphate pathway The phosphotransferase system 

Notes

Acknowledgments

We would like to acknowledge the financial support from Singapore-MIT Alliance.

Supplementary material

253_2015_6463_MOESM1_ESM.pdf (402 kb)
ESM 1 (PDF 401 kb)

References

  1. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330(6000):70–4CrossRefPubMedCentralPubMedGoogle Scholar
  2. Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23(5):612–6CrossRefPubMedGoogle Scholar
  3. Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 11(1):13–19CrossRefPubMedGoogle Scholar
  4. Baez-Viveros JL, Flores N, Juarez K, Castillo-Espana P, Bolivar F, Gosset G (2007) Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine. Microb Cell Fact 6:30CrossRefPubMedCentralPubMedGoogle Scholar
  5. Chatterjee R, Millard CS, Champion K, Clark DP, Donnelly MI (2001) Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 67(1):148–154CrossRefPubMedCentralPubMedGoogle Scholar
  6. Chen X, Zhang C, Zou R, Zhou K, Stephanopoulos G, Too HP (2013) Statistical experimental design guided optimization of a one-pot biphasic multienzyme total synthesis of amorpha-4,11-diene. PLoS One 8(11):e79650CrossRefPubMedCentralPubMedGoogle Scholar
  7. Chou CH, Bennett GN, San KY (1994) Effect of modified glucose uptake using genetic engineering techniques on high-level recombinant protein production in Escherichia coli dense cultures. Biotechnol Bioeng 44(8):952–60CrossRefPubMedGoogle Scholar
  8. Cunningham FX Jr, Sun Z, Chamovitz D, Hirschberg J, Gantt E (1994) Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant cell 6(8):1107–21CrossRefPubMedCentralPubMedGoogle Scholar
  9. Datsenko KA (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645CrossRefPubMedCentralPubMedGoogle Scholar
  10. De Anda R, Lara AR, Hernandez V, Hernandez-Montalvo V, Gosset G, Bolivar F, Ramirez OT (2006) Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab Eng 8(3):281–90CrossRefPubMedGoogle Scholar
  11. Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18(5):533–7CrossRefPubMedGoogle Scholar
  12. Farmer WR, Liao JC (2001) Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog 17(1):57–61CrossRefPubMedGoogle Scholar
  13. Flores N, Xiao J, Berry A, Bolivar F, Valle F (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14(5):620–623CrossRefPubMedGoogle Scholar
  14. Flores S, Gosset G, Flores N, de Graaf AA, Bolivar F (2002) Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase system by 13C labeling and NMR spectroscopy. Metab Eng 4(2):124–137CrossRefPubMedGoogle Scholar
  15. Flores N, Leal L, Sigala JC, de Anda R, Escalante A, Martinez A, Ramirez OT, Gosset G, Bolivar F (2007) Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease. J Mol Microbiol Biotechnol 13(1–3):105–16CrossRefPubMedGoogle Scholar
  16. Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6(8):613–24CrossRefPubMedGoogle Scholar
  17. Green S, Squire CJ, Nieuwenhuizen NJ, Baker EN, Laing W (2009) Defining the potassium binding region in an apple terpene synthase. J Biol Chem 284(13):8661–9CrossRefPubMedCentralPubMedGoogle Scholar
  18. Hernandez-Montalvo V, Martinez A, Hernandez-Chavez G, Bolivar F, Valle F, Gosset G (2003) Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng 83(6):687–94CrossRefPubMedGoogle Scholar
  19. Jin YS, Stephanopoulos G (2007) Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metab Eng 9(4):337–47CrossRefPubMedGoogle Scholar
  20. Jones KL, Kim S-W, Keasling JD (2000) Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng 2(4):328CrossRefPubMedGoogle Scholar
  21. Kreth J, Lengeler JW, Jahreis K (2013) Characterization of pyruvate uptake in Escherichia coli K-12. PLoS One 8(6):e67125CrossRefPubMedCentralPubMedGoogle Scholar
  22. Li Z, Nimtz M, Rinas U (2014) The metabolic potential of Escherichia coli BL21 in defined and rich medium. Microb Cell Fact 13(1):45CrossRefPubMedCentralPubMedGoogle Scholar
  23. Lindner SN, Seibold GM, Henrich A, Kramer R, Wendisch VF (2011) Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol 77(11):3571–81CrossRefPubMedCentralPubMedGoogle Scholar
  24. Lu J, Tang J, Liu Y, Zhu X, Zhang T, Zhang X (2012) Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl Microbiol Biotechnol 93(6):2455–2462CrossRefPubMedGoogle Scholar
  25. Martínez K, de Anda R, Hernández G, Escalante A, Gosset G, Ramírez OT, Bolívar FG (2008) Coutilization of glucose and glycerol enhances the production of aromatic compounds in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact 7(1):1CrossRefPubMedCentralPubMedGoogle Scholar
  26. Morita T, El-Kazzaz W, Tanaka Y, Inada T, Aiba H (2003) Accumulation of glucose 6-phosphate or fructose 6-phosphate is responsible for destabilization of glucose transporter mRNA in Escherichia coli. J Biol Chem 278(18):15608–14CrossRefPubMedGoogle Scholar
  27. Morrone D, Lowry L, Determan MK, Hershey DM, Xu M, Peters RJ (2010) Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering. Appl Microbiol Biotechnol 85(6):1893–906CrossRefPubMedCentralPubMedGoogle Scholar
  28. Nichols N, Dien B, Bothast R (2001) Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol 56(1–2):120–125CrossRefPubMedGoogle Scholar
  29. Patnaik R, Roof WD, Young RF, Liao JC (1992) Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle. J Bacteriol 174(23):7527–32PubMedCentralPubMedGoogle Scholar
  30. Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24(8):1027–1032CrossRefPubMedGoogle Scholar
  31. Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9(2):193–207CrossRefPubMedGoogle Scholar
  32. Sun T, Miao L, Li Q, Dai G, Lu F, Liu T, Zhang X, Ma Y (2014) Production of lycopene by metabolically-engineered Escherichia coli. Biotechnol Lett 36(7):1515–22CrossRefPubMedGoogle Scholar
  33. Too HP, ZOU R, Stephanopoulos GN (2014) Univariant extrinsic initiator control system for microbes and an in vitro assembly of large recombinant dna molecules from multiple components. USA Patent WO2014077782 A1, Nov 15, 2013Google Scholar
  34. Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD (2009) High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One 4(2):e4489CrossRefPubMedCentralPubMedGoogle Scholar
  35. Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 109(3):E111–8CrossRefPubMedCentralPubMedGoogle Scholar
  36. Yi J, Draths KM, Li K, Frost JW (2003) Altered glucose transport and shikimate pathway product yields in E. coli. Biotechnol Prog 19(5):1450–1459CrossRefPubMedGoogle Scholar
  37. Yuan LZ, Rouvière PE, Larossa RA, Suh W (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 8(1):79–90CrossRefPubMedGoogle Scholar
  38. Zhang G, Mills DA, Block DE (2009a) Development of chemically defined media supporting high-cell-density growth of lactococci, enterococci, and streptococci. Appl Environ Microbiol 75(4):1080–7CrossRefPubMedCentralPubMedGoogle Scholar
  39. Zhang X, Jantama K, Moore JC, Jarboe LR, Shanmugam KT, Ingram LO (2009b) Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci U S A 106(48):20180–5CrossRefPubMedCentralPubMedGoogle Scholar
  40. Zhang C, Chen X, Zou R, Zhou K, Stephanopoulos G, Too HP (2013) Combining genotype improvement and statistical media optimization for isoprenoid production in E. coli. PLoS One 8(10):e75164CrossRefPubMedCentralPubMedGoogle Scholar
  41. Zhou K, Zou R, Stephanopoulos G, Too HP (2012) Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production. Microb Cell Fact 11:148CrossRefPubMedCentralPubMedGoogle Scholar
  42. Zhou K, Zou R, Zhang C, Stephanopoulos G, Too HP (2013) Optimization of amorphadiene synthesis in bacillus subtilis via transcriptional, translational, and media modulation. Biotechnol Bioeng 110(9):2556–61CrossRefPubMedGoogle Scholar
  43. Zou R, Zhou K, Stephanopoulos G, Too HP (2013) Combinatorial engineering of 1-deoxy-D-xylulose 5-phosphate pathway using cross-lapping in vitro assembly (CLIVA) method. PLoS One 8(11):e79557CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Congqiang Zhang
    • 1
    • 2
  • Ruiyang Zou
    • 1
  • Xixian Chen
    • 1
    • 2
  • Gregory Stephanopoulos
    • 1
    • 3
  • Heng-Phon Too
    • 1
    • 2
  1. 1.Chemical and Pharmaceutical EngineeringSingapore-MIT AllianceSingaporeSingapore
  2. 2.Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
  3. 3.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations