Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 14, pp 6059–6068 | Cite as

Biodegradation of fat, oil and grease (FOG) deposits under various redox conditions relevant to sewer environment

  • Xia He
  • Qian Zhang
  • Michael J. Cooney
  • Tao YanEmail author
Environmental biotechnology

Abstract

Fat, oil and, grease (FOG) deposits are one primary cause of sanitary sewer overflows (SSOs). While numerous studies have examined the formation of FOG deposits in sewer pipes, little is known about their biodegradation under sewer environments. In this study, FOG deposit biodegradation potential was determined by studying the biodegradation of calcium palmitate in laboratory under aerobic, nitrate-reducing, sulfate-reducing, and methanogenic conditions. Over 110 days of observation, calcium palmitate was biodegraded to CO2 under aerobic and nitrate-reducing conditions. An approximate 13 times higher CO2 production rate was observed under aerobic condition than under nitrate-reducing condition. Under sulfate-reducing condition, calcium palmitate was recalcitrant to biodegradation as evidenced by small reduction in sulfate. No evidence was found to support calcium palmitate degradation under methanogenic condition in the simulated sewer environment. Dominant microbial populations in the aerobic and nitrate-reducing microcosms were identified by Illumina seqeuncing, which may contain the capability to degrade calcium palmitate under both aerobic and nitrate-reducing conditions. Further study on these populations and their functional genes could shed more light on this microbial process and eventually help develop engineering solutions for SSOs control in the future.

Keywords

Fat, oil and grease (FOG) deposits Biodegradation Redox conditions Sewer systems 

Notes

Acknowledgements

We would like to thank the United States Environmental Protection Agency (USEPA grant: R834871) for funding this research.  The contents of this research are solely the responsibility of the grantee and do not necessarily represent the official views of the USEPA.  Further, USEPA does not endorse the purchase of any commercial products or services mentioned in the publication.

References

  1. Alain K, Harder J, Widdel F, Zengler K (2012) Anaerobic utilization of toluene by marine alpha- and gammaproteobacteria reducing nitrate. Microbiol-Sgm 158:2946–2957. doi: 10.1099/Mic. 0.061598-0 CrossRefGoogle Scholar
  2. Alonso-Gutierrez J, Costa MM, Figueras A, Albaiges J, Vinas M, Solanas AM, Novoa B (2008) Alcanivorax strain detected among the cultured bacterial community from sediments affected by the ‘Prestige’ oil spill. Mar Ecol Prog Ser 362:25–36. doi: 10.3354/Meps07431
  3. Alves MM, Pereira MA, Sousa DZ, Cavaleiro AJ, Picavet M, Smidt H, Stams AJM (2009) Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA). Microbiol Biotechnol 2(5):538–550. doi: 10.1111/j.1751-7915.2009.00100.× CrossRefGoogle Scholar
  4. APHA (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Water Works Assn, Washington, DCGoogle Scholar
  5. Becker P, Koster D, Popov MN, Markossian S, Antranikian G, Markl H (1999) The biodegradation of olive oil and the treatment of lipid-rich wool scouring wastewater under aerobic thermophilic conditions. Water Res 33(3):653–660CrossRefGoogle Scholar
  6. Bishop EA, Bermingham MAC (1973) Lipid composition of Gram-negative bacteria, sensitive and resistant to streptomycin. Antimicrob Agents Chemother 4(3):378–379PubMedCentralPubMedCrossRefGoogle Scholar
  7. Canakci M (2007) The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour Technol 98(1):183–190. doi: 10.1016/j.biortech.2005.11.022 PubMedCrossRefGoogle Scholar
  8. Fazi S, Amalfitano S, Pernthaler J, Puddu A (2005) Bacterial communities associated with benthic organic matter in headwater stream microhabitats. Environ Microbiol 7(10):1633–1640. doi: 10.1111/j.1462-2920.2005.00857.× PubMedCrossRefGoogle Scholar
  9. Hasinger M, Scherr KE, Lundaa T, Brauer L, Zach C, Loibner AP (2012) Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions. J Biotechnol 157(4):490–498. doi: 10.1016/j.jbiotec.2011.09.027 PubMedCrossRefGoogle Scholar
  10. Hatamoto M, Imachi H, Yashiro Y, Ohashi A, Harada H (2007) Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. Appl Environ Microbiol 73(13):4119–4127. doi: 10.1128/Aem. 00362-07 PubMedCentralPubMedCrossRefGoogle Scholar
  11. He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39(14):5262–5267. doi: 10.1021/Es0502876 PubMedCrossRefGoogle Scholar
  12. He X, Iasmin M, Dean LO, Lappi SE, Ducoste JJ, de los Reyes FL (2011) Evidence for fat, oil, and grease (FOG) deposit formation mechanisms in sewer lines. Environ Sci Technol 45(10):4385–4391. doi: 10.1021/Es2001997 PubMedCrossRefGoogle Scholar
  13. He X, de los Reyes FL, Leming ML, Dean LO, Lappi SE, Ducoste JJ (2013) Mechanisms of fat, oil and grease (FOG) deposit formation in sewer lines. Water Res 47(13):4451–4459. doi: 10.1016/j.watres.2013.05.002 PubMedCrossRefGoogle Scholar
  14. Hubert CRJ, Oldenburg TBP, Fustic M, Gray ND, Larter SR, Penn K, Rowan AK, Seshadri R, Sherry A, Swainsbury R, Voordouw G, Voordouw JK, Head IM (2012) Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil. Environ Microbiol 14(2):387–404. doi: 10.1111/j.1462-2920.2011.02521.× PubMedCentralPubMedCrossRefGoogle Scholar
  15. Ichihara K, Fukubayashi Y (2010) Preparation of fatty acid methyl esters for gas-liquid chromatography. J Lipid Res 51(3):635–640. doi: 10.1194/Jlr.D001065 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Keener KM, Ducoste JJ, Holt LM (2008) Properties influencing fat, oil, and grease deposit formation. Water Environ Res 80(12):2241–2246. doi: 10.2175/193864708×267441 PubMedCrossRefGoogle Scholar
  17. Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39(2):91–100. doi: 10.1111/J.1574-6941.2002.Tb00910.× PubMedGoogle Scholar
  18. Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R (2011) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Current protocols in bioinformatics / editoral board, Andreas D Baxevanis [et al.] Chapter 10:Unit 10 7 doi: 10.1002/0471250953.bi1007s36
  19. Lalman JA, Bagley DM (2000) Anaerobic degradation and inhibitory effects of linoleic acid. Water Res 34(17):4220–4228. doi: 10.1016/S0043-1354(00)00180-9 CrossRefGoogle Scholar
  20. Lalman JA, Bagley DM (2001) Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Res 35(12):2975–2983. doi: 10.1016/S0043-1354(00)00593-5 PubMedCrossRefGoogle Scholar
  21. Lee KH, Park KY, Khanal SK, Lee JW (2013) Effects of household detergent on anaerobic fermentation of kitchen wastewater from food waste disposer. J Hazard Mater 244:39–45. doi: 10.1016/j.jhazmat.2012.10.073 PubMedCrossRefGoogle Scholar
  22. Li YY, Sasaki H, Yamashita K, Seki K, Kamigochi I (2002) High-rate methane fermentation of lipid-rich food wastes by a high-solids co-digestion process. Water Sci Technol 45(12):143–150PubMedGoogle Scholar
  23. Li ZK, Wrenn BA, Venosa AD (2005) Anaerobic biodegradation of vegetable oil and its metabolic intermediates in oil-enriched freshwater sediments. Biodegradation 16(4):341–352. doi: 10.1007/s10532-004-2057-6 PubMedCrossRefGoogle Scholar
  24. Loehr RC, Roth JC (1968) Aerobic degradation of long-chain fatty acid salts. J - Water Pollut Control Fed 40(11):385–403Google Scholar
  25. Matsui T, Yamamoto T, Shinzato N, Mitsuta T, Nakano K, Namihira T (2014) Degradation of oil tank sludge using long-chain alkane-degrading bacteria. Ann Microbiol 64(1):391–395. doi: 10.1007/s13213-013-0643-8 CrossRefGoogle Scholar
  26. More MI, Herrick JB, Silva MC, Ghiorse WC, Madsen EL (1994) Quantitative cell-lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 60(5):1572–1580PubMedCentralPubMedGoogle Scholar
  27. Niepceron M, Martin-Laurent F, Crampon M, Portet-Koltalo F, Akpa-Vinceslas M, Legras M, Bru D, Bureau F, Bodilis J (2013) GammaProteobacteria as a potential bioindicator of a multiple contamination by polycyclic aromatic hydrocarbons (PAHs) in agricultural soils. Environ Pollut 180:199–205. doi: 10.1016/j.envpol.2013.05.040 PubMedCrossRefGoogle Scholar
  28. Novak JT, Kraus DL (1973) Degradation of long chain fatty acids by activated sludge. Water Res 7(6):843–851. doi: 10.1016/0043-1354(73)90100-0 CrossRefGoogle Scholar
  29. Pagaling E, Yang K, Yan T (2014) Pyrosequencing reveals correlations between extremely acidophilic bacterial communities with hydrogen sulphide concentrations, pH and inert polymer coatings at concrete sewer crown surfaces. J Appl Microbiol 117(1):50–64. doi: 10.1111/Jam.12491 PubMedCrossRefGoogle Scholar
  30. Pereira MA, Pires OC, Mota M, Alves MM (2005) Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge. Biotechnol Bioeng 92(1):15–23PubMedCrossRefGoogle Scholar
  31. Ratledge C, Wilkinson SG (1989) Microbial lipids, volume 2. Academic, LondonGoogle Scholar
  32. Roy F, Albagnac G, Samain E (1985) Influence of calcium addition on growth of highly purified syntrophic cultures degrading long-chain fatty acids. Appl Environ Microbiol 49(3):702–705Google Scholar
  33. Salam DA, Naik N, Suidan MT, Venosa AD (2012) Assessment of aquatic toxicity and oxygen depletion during aerobic biodegradation of vegetable oil: effect of oil loading and mixing regime. Environ Sci Technol 46(4):2352–2359. doi: 10.1021/Es2037993 PubMedCrossRefGoogle Scholar
  34. Shin HS, Kim SH, Lee CY, Nam SY (2003) Inhibitory effects of long-chain fatty acids on VFA degradation and beta-oxidation. Water Sci Technol 47(10):139–146Google Scholar
  35. Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28(2):175–211. doi: 10.3354/Ame028175 CrossRefGoogle Scholar
  36. Sousa DZ, Pereira MA, Stams AJM, Alves MM, Smidt H (2007) Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids. Appl Environ Microbiol 73(4):1054–1064. doi: 10.1128/Aem. 01723-06 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Suzuki K, Komagata K (1983) Taxonomic significance of cellular fatty acid composition in some coryneform bacteria. Int J Syst Bacteriol 33(2):188–200CrossRefGoogle Scholar
  38. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41(1):100–180PubMedCentralPubMedGoogle Scholar
  39. USEPA (2004) Report to Congress: Impacts and control of CSOs and SSOs. Office of Water, United States Environmental Protection Agency, Washington D.C. EPA B33-R-04-001Google Scholar
  40. Williams JB, Clarkson C, Mant C, Drinkwater A, May E (2012) Fat, oil and grease deposits in sewers: characterisation of deposits and formation mechanisms. Water Res 46(19):6319–6328PubMedCrossRefGoogle Scholar
  41. Yucesoy E, Ludemann N, Lucas H, Tan J, Denecke M (2012) Protein analysis as a measure of active biomass in activated sludge. Water Sci Technol 65(8):1483–1489. doi: 10.2166/Wst.2012.029 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xia He
    • 1
  • Qian Zhang
    • 1
  • Michael J. Cooney
    • 2
  • Tao Yan
    • 1
    Email author
  1. 1.Department of Civil and Environmental EngineeringUniversity of Hawaii at ManoaHonoluluUSA
  2. 2.Hawaii Natural Energy InstituteUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations