Applied Microbiology and Biotechnology

, Volume 99, Issue 6, pp 2763–2772 | Cite as

RETRACTED ARTICLE: Genome sequence and genome mining of a marine-derived antifungal bacterium Streptomyces sp. M10

  • Jingbo Tang
  • Xingyan Liu
  • Jian PengEmail author
  • Yong Tang
  • Yang Zhang
Genomics, transcriptomics, proteomics


A marine-derived actinobacteria Streptomyces sp. M10 was identified as a prolific antifungal compounds producer and shared a 99.02 % 16S ribosomal RNA (rRNA) sequence similarity with that of Streptomyces marokkonensis Ap1T, which can produce polyene macrolides. To further evaluate its biosynthetic potential, the 7,207,169 bp Streptomyces sp. M10 linear chromosome was sequenced and mined for identifiable secondary metabolite-associated gene clusters. A total of 20 secondary metabolite-associated gene clusters were deduced, including three polyketide synthases (PKSs), four non-ribosomal peptide synthetases (NRPSs), four hybrid NRPS-PKSs, three NRPS-independent siderophores, and two lantibiotic and four terpene biosynthetic gene clusters. One of the type I PKS gene cluster, pks1, shared a 85 % nucleotide similarity with candicidin/FR008 gene cluster, indicating the capacity of this organism to produce polyene macrolides. This assumption was verified by a scale-up culturing of Streptomyces sp. M10 on A1 agar plates, which lead to the isolation of two polyene families PF1 and PF2, with characteristic UV adsorption at 269, 278, and 290 nm (PF1) and 363, 386, and 408 nm (PF2), respectively. Compound 9-04 was further purified from PF1, and its chemical structure was partially elucidated to be a typical polyene macrolide by NMR and UV spectrum. This study affirmatively identified Streptomyces sp. M10 as a source of polyene metabolites and highlighted genome mining of interested organism as a powerful tool for natural product discovery.


Streptomyces sp. M10 Genome mining Secondary metabolites Polyketide synthase Polyene 



This work was supported by the National Natural Science Foundation of China (Grant No. 30672047).

Supplementary material

253_2015_6453_MOESM1_ESM.pdf (466 kb)
ESM 1 (PDF 466 kb)


  1. Barreiro C, Prieto C, Sola-Landa A, Solera E, Martínez-Castro M, Pérez-Redondo R, García-Estrada C, Aparicio JF, Fernández-Martínez LT, Santos-Aberturas J, Salehi-Najafabadi Z, Rodríguez-García A, Tauch A, Martín JF (2012) Draft genome of Streptomyces tsukubaensis NRRL 18488, the producer of the clinically important immunosuppressant tacrolimus (FK506). J Bacteriol 194(14):3756–3757PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417(6885):141–147CrossRefPubMedGoogle Scholar
  3. Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26CrossRefPubMedGoogle Scholar
  4. Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41(W1):W204–W212PubMedCentralCrossRefPubMedGoogle Scholar
  5. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2013) Marine natural products. Nat Prod Rep 30(2):237–323CrossRefPubMedGoogle Scholar
  6. Bouizgarne B, El Hadrami I, Ouhdouch Y (2006) Novel production of isochainin by a strain of Streptomyces sp. isolated from rhizosphere soil of the indigenous Moroccan plant Argania spinosa L. World J Microbiol Biotechnol 22(5):423–429CrossRefGoogle Scholar
  7. Bouizgarne B, Lanoot B, Loqman S, Spröer C, Klenk HP, Swings J, Ouhaouch Y (2009) Streptomyces marokkonensis sp. nov., isolated from rhizosphere soil of Argania spinosa L. Int J Syst Evol Microbiol 59(11):2857–2863CrossRefPubMedGoogle Scholar
  8. Carver T, Berriman M, Tivey A, Patel C, Böhme U, Barrell BG, Parkhill J, Rajandream MA (2008) Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24(23):2672–2676PubMedCentralCrossRefPubMedGoogle Scholar
  9. Chen S, Huang X, Zhou XF, Bai LQ, He J, Jeong KJ, Lee SY, Deng ZX (2003) Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex. Chem Biol 10(11):1065–1076CrossRefPubMedGoogle Scholar
  10. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–44Google Scholar
  11. Corre C, Challis GL (2009) New natural product biosynthetic chemistry discovered by genome mining. Nat Prod Rep 26(8):977–986CrossRefPubMedGoogle Scholar
  12. Dong YS, Yang JS, Zhang H, Lin J, Ren X, Liu M, Lu XH, He JG (2005) Wortmannilactones A − D, 22-membered triene macrolides from Talaromyces wortmannii. J Nat Prod 69(1):128–130CrossRefGoogle Scholar
  13. Dutcher JD, Walters DR, Wintersteiner O (1963) Nystatin. III. mycosamine: preparation and determination of structure. J Org Chem 28(4):995–999CrossRefGoogle Scholar
  14. Fukuda T, Kim YP, Iizima K, Tomoda H, Omura S (2003) Takanawaenes, novel antifungal antibiotics produced by Streptomyces sp. K99-5278. II. Structure elucidation. J Antibiot 56(5):448–453CrossRefPubMedGoogle Scholar
  15. Helfrich EJ, Reiter S, Piel J (2014) Recent advances in genome-based polyketide discovery. Curr Opin Biotechnol 29:107–115CrossRefPubMedGoogle Scholar
  16. Hyatt D, Chen GL, LoCascio P, Land M, Larimer F, Hauser L (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11(1):119PubMedCentralCrossRefPubMedGoogle Scholar
  17. Kim DG, Moon K, Kim SH, Park SH, Park S, Lee SK, Oh KB, Shin J, Oh DC (2012a) Bahamaolides A and B, antifungal polyene polyol macrolides from the marine actinomycete Streptomyces sp. J Nat Prod 75(5):959–967CrossRefPubMedGoogle Scholar
  18. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012b) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62(3):716–721CrossRefPubMedGoogle Scholar
  19. Komaki H, Ichikawa N, Hosoyama A, Takahashi-Nakaguchi A, Matsuzawa T, Suzuki K, Fujita N, Gonoi T (2014) Genome based analysis of type-I polyketide synthase and nonribosomal peptide synthetase gene clusters in seven strains of five representative Nocardia species. BMC Genomics 15(1):323PubMedCentralCrossRefPubMedGoogle Scholar
  20. Kwon HC, Kauffman CA, Jensen PR, Fenical W (2008) Marinisporolides, polyene-polyol macrolides from a marine actinomycete of the new genus Marinispora. J Org Chem 74(2):675–684CrossRefGoogle Scholar
  21. Ishikawa J, Yamashita A, Mikami Y, Hoshino Y, Kurita H, Hotta K, Shiba T, Hattori M (2004) The complete genomic sequence of Nocardia farcinica IFM 10152. Proc Natl Acad Sci U S A 101(41):14925-30Google Scholar
  22. Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1(5):265–269CrossRefPubMedGoogle Scholar
  23. Li RQ, Li YR, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5):713–714CrossRefPubMedGoogle Scholar
  24. Malin G, Lapidot A (1996) Induction of synthesis of tetrahydropyrimidine derivatives in Streptomyces strains and their effect on Escherichia coli in response to osmotic and heat stress. J Bacteriol 178(2):385–395PubMedCentralPubMedGoogle Scholar
  25. Margalith P, Beretta G (1960) Rifomycin. XI: taxonomic study on Streptomyces mediterranei nov. sp. Mycopathol Mycol Appl 13(4):321–330CrossRefGoogle Scholar
  26. Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26(11):1362–1384PubMedCentralCrossRefPubMedGoogle Scholar
  27. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190(11):4050–4060PubMedCentralCrossRefPubMedGoogle Scholar
  28. Ōmura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98(21):12215–12220PubMedCentralCrossRefPubMedGoogle Scholar
  29. Oura M, Sternberg T, Wright E (1955) A new antifungal antibiotic, amphotericin B. Antibiot Annu 3:566–573PubMedGoogle Scholar
  30. Rebets Y, Tokovenko B, Lushchyk I, Rückert C, Zaburannyi N, Bechthold A, Kalinowski J, Luzhetskyy A (2014) Complete genome sequence of producer of the glycopeptide antibiotic Aculeximycin Kutzneria albida DSM 43870T, a representative of minor genus of Pseudonocardiaceae. BMC Genomics 15(1):885PubMedCentralCrossRefPubMedGoogle Scholar
  31. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  32. Scheffler R, Colmer S, Tynan H, Demain A, Gullo V (2013) Antimicrobials, drug discovery, and genome mining. Appl Microbiol Biotechnol 97(3):969–978CrossRefPubMedGoogle Scholar
  33. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCentralCrossRefPubMedGoogle Scholar
  34. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882PubMedCentralCrossRefPubMedGoogle Scholar
  35. Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci U S A 104(25):10376–81Google Scholar
  36. Yoshikawa K, Adachi K, Nishijima M, Takadera T, Tamaki S, Harada K, Mochida K, Sano H (2000) β-Cyanoalanine production by marine bacteria on cyanide-free medium and its specific inhibitory activity toward cyanobacteria. Appl Environ Microbiol 66(2):718–722PubMedCentralCrossRefPubMedGoogle Scholar
  37. Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. ChemBioChem 10(4):625–633CrossRefPubMedGoogle Scholar
  38. Ziemert N, Lechner A, Wietz M, Millán-Aguiñaga N, Chavarria KL, Jensen PR (2014) Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci U S A 111(12):E1130–E1139PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jingbo Tang
    • 1
    • 2
    • 3
  • Xingyan Liu
    • 2
  • Jian Peng
    • 1
    Email author
  • Yong Tang
    • 3
  • Yang Zhang
    • 1
  1. 1.Hepatobiliary and Enteric Surgery Research Center, Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.China-America Cancer Research InstituteGuangdong Medical CollegeDongguanChina
  3. 3.Institute of Biomedical Engineering, Xiangya School of MedicineCentral South UniversityChangshaChina

Personalised recommendations