Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 6, pp 2491–2511 | Cite as

Applications of bacterial cellulose and its composites in biomedicine

  • J. M. Rajwade
  • K. M. Paknikar
  • J. V. Kumbhar
Mini-Review

Abstract

Bacterial cellulose produced by few but specific microbial genera is an extremely pure natural exopolysaccharide. Besides providing adhesive properties and a competitive advantage to the cellulose over-producer, bacterial cellulose confers UV protection, ensures maintenance of an aerobic environment, retains moisture, protects against heavy metal stress, etc. This unique nanostructured matrix is being widely explored for various medical and nonmedical applications. It can be produced in various shapes and forms because of which it finds varied uses in biomedicine. The attributes of bacterial cellulose such as biocompatibility, haemocompatibility, mechanical strength, microporosity and biodegradability with its unique surface chemistry make it ideally suited for a plethora of biomedical applications. This review highlights these qualities of bacterial cellulose in detail with emphasis on reports that prove its utility in biomedicine. It also gives an in-depth account of various biomedical applications ranging from implants and scaffolds for tissue engineering, carriers for drug delivery, wound-dressing materials, etc. that are reported until date. Besides, perspectives on limitations of commercialisation of bacterial cellulose have been presented. This review is also an update on the variety of low-cost substrates used for production of bacterial cellulose and its nonmedical applications and includes patents and commercial products based on bacterial cellulose.

Keywords

Bacterial cellulose Nanocomposites Biomedical applications Biomaterials 

References

  1. Abeer MM, Mohd Amin MCI, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66:1047–1061. doi: 10.1111/jphp.12234 PubMedGoogle Scholar
  2. Akduman B, Uygun M, Coban EP, Uygun DA, Bıyık H, Akgöl S (2013) Reversible immobilization of urease by using bacterial cellulose nanofibers. Appl Biochem Biotechnol 171:2285–2294. doi: 10.1007/s12010-013-0541-3 PubMedCrossRefGoogle Scholar
  3. Almeida IF, Pereira T, Silva NHCS, Gomes FP, Silvestre AJD, Freire CSR, Sousa Lobo JM, Costa PC (2014) Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur J Pharm Biopharm :1–5Google Scholar
  4. Alvarez OM, Patel M, Booker J, Markowitz L (2004) Effectiveness of a biocellulose wound dressing for the treatment of chronic venous leg ulcers: results of a single center randomized study involving 24 patients. Wounds 16:1–11Google Scholar
  5. Amorim WL, Costa HO, De Souza FC, De Castro MG, Da Silva L (2009) Experimental study of the tissue reaction caused by the presence of cellulose produced. Braz J Otorhinolaryngol 75:200–207PubMedCrossRefGoogle Scholar
  6. Andersson J, Stenhamre H, Backdahl H, Gatenholm P (2010) Behaviour of human chondrocytes in engineered porous bacterial cellulose scaffolds. J Biomed Mater Res A 94:1124–1132PubMedGoogle Scholar
  7. Andrade FK, Moreira SMG, Domingues L, Gama FMP (2010) Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD. J Biomed Mater Res A 92:9–17. doi: 10.1002/jbm.a.32284 PubMedCrossRefGoogle Scholar
  8. Andrade FK, Silva JP, Carvalho M, Castanheira EMS, Soares R, Gama M (2011) Studies on the hemocompatibility of bacterial cellulose. J Biomed Mater Res A 98:554–566. doi: 10.1002/jbm.a.33148 PubMedCrossRefGoogle Scholar
  9. Andrade FK, Alexandre N, Amorim I, Gartner F, Mauricio AC, Luis AL, Gama M (2013) Studies on the biocompatibility of bacterial cellulose. J Bioact Compat Polym 28:97–112. doi: 10.1177/0883911512467643 CrossRefGoogle Scholar
  10. Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179:93–100. doi: 10.1016/j.toxlet.2008.04.009 PubMedCrossRefGoogle Scholar
  11. Ávila MH, Schwarz S, Feldmann E-M, Mantas A, Von Bomhard A, Gatenholm P, Rotter N (2014) Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 98:7423–7435. doi: 10.1007/s00253-014-5819-z CrossRefGoogle Scholar
  12. Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149. doi: 10.1016/j.biomaterials.2005.10.026 PubMedCrossRefGoogle Scholar
  13. Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. Tissue Eng Regen Med 2:320–330CrossRefGoogle Scholar
  14. Bae SO, Shoda M (2005) Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl Microbiol Biotechnol 67:45–51. doi: 10.1007/s00253-004-1723-2 PubMedCrossRefGoogle Scholar
  15. Barud HS, Ribeiro SJL (2013) Optically transparent membrane based on bacterial cellulose / polycaprolactone. Polímeros 23:135–138. doi: 10.1590/S0104-14282013005000018 Google Scholar
  16. Barud HS, Regiani T, Marques RFC, Lustri WR, Messaddeq Y, Ribeiro SJL (2011) Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. J Nanomater 2011:1–8. doi: 10.1155/2011/721631 CrossRefGoogle Scholar
  17. Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107. doi: 10.1111/j.1365-2672.2009.04467.x PubMedCrossRefGoogle Scholar
  18. Benziman M, Haigler CH, Brown RM, White AR, Cooper KM (1980) Cellulose biogenesis: polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Sci 77:6678–6682. doi: 10.1073/pnas.77.11.6678 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Bodin A, Bäckdahl H, Fink H, Gustafsson L, Risberg B, Gatenholm P (2007a) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97:425–434PubMedCrossRefGoogle Scholar
  20. Bodin A, Concaro S, Brittberg M, Gatenholm P (2007b) Bacterial cellulose as a potential meniscus implant. Biotechnol Bioeng 97:406–408. doi: 10.1002/term CrossRefGoogle Scholar
  21. Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31:8889–8901. doi: 10.1016/j.biomaterials.2010.07.108 PubMedCrossRefGoogle Scholar
  22. Brown RM Jr, Saxena IM (2000) Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem 38:57–67. doi: 10.1016/S0981-9428(00)00168-6 CrossRefGoogle Scholar
  23. Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr Polym 40:137–143. doi: 10.1016/S0144-8617(99)00050-8 CrossRefGoogle Scholar
  24. Cai Z, Kim J (2010) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91. doi: 10.1007/s10570-009-9362-5 CrossRefGoogle Scholar
  25. Cao XY, Du JJ, Lin Q, Feng YH, Wang XB, Wu ZX (2009) Preparation of carboxymethyl cellulose-bacterial cellulose composite membranes for blood purification. CN Patent 200910126692.3Google Scholar
  26. Carreira P, Mendes JAS, Trovatti E, Serafim LS, Freire CSR, Silvestre AJD, Neto CP (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour Technol 102:7354–7360. doi: 10.1016/j.biortech.2011.04.081 PubMedCrossRefGoogle Scholar
  27. Castro C, Zuluaga R, Putaux J-L, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102. doi: 10.1016/j.carbpol.2010.10.072 CrossRefGoogle Scholar
  28. Chao Y, Mitarai M, Sugano Y, Shoda M (2001) Effect of addition of water-soluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor. Biotechnol Prog 17:781–785. doi: 10.1021/bp010046b PubMedCrossRefGoogle Scholar
  29. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124Google Scholar
  30. Chen YM (2009) In vitro cytotoxicity of bacterial cellulose scaffolds used for tissue-engineered bone. J Bioact Compat Polym 24:137–145. doi: 10.1177/0883911509102710 CrossRefGoogle Scholar
  31. Chen YM, Xi TF, Zheng YF, Zhou L, Wan YZ (2011) In vitro structural changes of nano-bacterial cellulose immersed in phosphate buffer solution. J Biomimetics Biomater Tissue Eng 10:55–66. doi: 10.4028/www.scientific.net/JBBTE.10.55 CrossRefGoogle Scholar
  32. Chen L, Hong F, Yang X, Han S (2013) Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresour Technol 135:464–468. doi: 10.1016/j.biortech.2012.10.029 PubMedCrossRefGoogle Scholar
  33. Cheng KC, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12. doi: 10.1186/1754-1611-3-12 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P, Phisalaphong M (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85:548–553. doi: 10.1016/j.carbpol.2011.03.011 CrossRefGoogle Scholar
  35. Ching CH, Muhammad II (2007) Evaluation and optimization of microbial cellulose (nata) production using pineapple waste as substract. In: National research and innovation competition (NRIC) Penang, MalaysiaGoogle Scholar
  36. Ciechańska D (2004) Multifunctional bacterial cellulose / chitosan composite materials for medical applications. Fibres Text East Eur 12:69–72Google Scholar
  37. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The Future prospects of microbial cellulose in biomedical applications. Biomacromolecules. doi: 10.1021/bm060620d PubMedGoogle Scholar
  38. Czaja W, Kyryliouk D, DePaula CA, Buechter DD (2014) Oxidation of γ-irradiated microbial cellulose results in bioresorbable, highly conformable biomaterial. J Appl Polym Sci 131. doi: 10.1002/app.39995
  39. Davis JR (2003) Handbook of materials for medical devices (ed) ASM International p 1–11. doi: 10.1361/hmmd2003p001
  40. De Olyveira GM, Manzine Costa LM, Basmaji P, Xavier Filho L (2011) Bacterial nanocellulose for medicine regenerative. J Nanotechnol Eng Med 2:034001. doi: 10.1115/1.4004181 CrossRefGoogle Scholar
  41. Deiannino NI, Couso RO, Dankert MA (1988) Lipid-linked intermediates and the synthesis of acetan in Acetobacter xylinum. J Gen Microbiol 134:1731–1736. doi: 10.1099/00221287-134-6-1731 Google Scholar
  42. Dobre L-M, Stoica-Guzun A, Stroescu M, Jipa IM, Dobre T, Ferdeş M, Ciumpiliac Ş (2011) Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films. Chem Pap 66:144–151. doi: 10.2478/s11696-011-0086-2 Google Scholar
  43. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. doi: 10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  44. El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. BioResources 3:1196–1217Google Scholar
  45. Fan X, Zhang T, Zhao Z, Ren H, Zhang Q, Yan Y, Lv G (2012) Preparation and characterization of bacterial cellulose microfiber/goat bone apatite composites for bone repair. J Appl Polym Sci 129:595–603. doi: 10.1002/app.38702 CrossRefGoogle Scholar
  46. Fang B, Wan Y, Ph D, Tang T, Gao C, Dai K (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite / bacterial. Tissue Eng A 15:1091–1099CrossRefGoogle Scholar
  47. Farah LFX (1990) Process for the preparation of cellulose film, cellulose film produced thereby, artificial skin graft and its use. U.S. patent 4912049Google Scholar
  48. Figueiredo AGPR, Figueiredo ARP, Alonso-varona A, Fernandes SCM, Palomares T, Rubio-azpeitia E, Barros-timmons A, Silvestre AJD, Neto CP, Freire CSR (2013) Biocompatible Bacterial Cellulose-Poly(2-hydroxyethyl methacrylate) Nanocomposite Films. Biomed Res Int 2013:698141. doi: 10.1155/2013/698141 PubMedCentralPubMedGoogle Scholar
  49. Fink H, Gustafsson L, Bodin A, Ba H (2007) Influence of Cultivation Conditions on Mechanical and Morphological Properties of Bacterial Cellulose Tubes. Biotechnol Bioeng 97:425–434. doi: 10.1002/bit PubMedCrossRefGoogle Scholar
  50. Fink H, Faxälv L, Molnár GF, Drotz K, Risberg B, Lindahl TL, Sellborn A (2010) Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials. Acta Biomater 6:1125–1130. doi: 10.1016/j.actbio.2009.09.019 PubMedCrossRefGoogle Scholar
  51. Fontana JD, De Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, De Souza SJ, Narcisco GP, Bichara JA, Farah LFX (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264. doi: 10.1007/BF02920250 PubMedCrossRefGoogle Scholar
  52. Fu L, Zhang Y, Li C, Wu Z, Zhuo Q, Huang X, Qiu G, Zhou P, Yang G (2012) Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. J Mater Chem 22:12349. doi: 10.1039/c2jm00134a CrossRefGoogle Scholar
  53. Gao C, Wan Y, Yang C, Dai K, Tang T, Luo H, Wang J (2010) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18:139–145. doi: 10.1007/s10934-010-9364-6 CrossRefGoogle Scholar
  54. Gao C, Wan Y, Lei X, Qu J, Yan T, Dai K (2011) Polylysine coated bacterial cellulose nanofibers as novel templates for bone-like apatite deposition. Cellulose 18:1555–1561. doi: 10.1007/s10570-011-9571-6 CrossRefGoogle Scholar
  55. Gao C, Yan T, Du J, He F, Luo H, Wan Y (2014) Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via immobilising ε -polylysine nanocoatings. Food Hydrocoll 36:204–211CrossRefGoogle Scholar
  56. Gomathi N, Sureshkumar A, Neogi S (2008) RF plasma-treated polymers for biomedical applications. Curr Sci 94:1478Google Scholar
  57. Grande CJ, Torres FG, Gomez CM, Bañó MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615. doi: 10.1016/j.actbio.2009.01.022 PubMedCrossRefGoogle Scholar
  58. Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646PubMedCrossRefGoogle Scholar
  59. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876–921. doi: 10.1016/j.progpolymsci.2007.05.012 CrossRefGoogle Scholar
  60. Guo X, Cavka A, Jönsson LJ, Hong F (2013) Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb Cell Fact 12:93. doi: 10.1186/1475-2859-12-93 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Hagiwara Y, Putra A, Kakugo A, Furukawa H, Gong JP (2010) Ligament-like tough double-network hydrogel based on bacterial cellulose. Cellulose 17:93–101. doi: 10.1007/s10570-009-9357-2 CrossRefGoogle Scholar
  62. Haimer E, Wendland M, Schlufter K, Frankenfeld K, Miethe P, Potthast A, Rosenau T, Liebner F (2010) Loading of bacterial cellulose aerogels with bioactive compounds by antisolvent precipitation with supercritical carbon dioxide. Macromol Symp 294:64–74. doi: 10.1002/masy.201000008 CrossRefGoogle Scholar
  63. Heath BP, Coffindaffer TW, Kyte KE, Smith ED, McConaughy SD (2011) Personal cleansing compositions comprising a bacterial cellulose network and cationic polymer. US Patent 2011/0039744 A1Google Scholar
  64. Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76:431–438. doi: 10.1002/jbm.a.30570 PubMedCrossRefGoogle Scholar
  65. Henrik B, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2:320–330. doi: 10.1002/term CrossRefGoogle Scholar
  66. Hong F, Qiu K (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr Polym 72:545–549. doi: 10.1016/j.carbpol.2007.09.015 CrossRefGoogle Scholar
  67. Hu Y, Catchmark JM (2011) In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater 7:2835–2845. doi: 10.1016/j.actbio.2011.03.028 PubMedCrossRefGoogle Scholar
  68. Hu W, Chen S, Li X, Shi S, Shen W, Zhang X, Wang H (2009) In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater Sci Eng C 29:1216–1219. doi: 10.1016/j.msec.2008.09.017 CrossRefGoogle Scholar
  69. Hu W, Chen S, Liu L, Ding B, Wang H (2011a) Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sensors Actuators B Chem 157:554–559. doi: 10.1016/j.snb.2011.05.021 CrossRefGoogle Scholar
  70. Hu W, Chen S, Zhou B, Liu L, Ding B, Wang H (2011b) Highly stable and sensitive humidity sensors based on quartz crystal microbalance coated with bacterial cellulose membrane. Sensors Actuators B Chem 159:301–306. doi: 10.1016/j.snb.2011.07.014 CrossRefGoogle Scholar
  71. Hu Y, Catchmark M, Vogler EA (2013) Factors impacting the formation of sphere-like bacterial cellulose particles and their biocompatibility for human osteoblast growth. Biomacromolecules 14:3444–3452. doi: 10.1021/bm400744a PubMedCrossRefGoogle Scholar
  72. Hu W, Chen S, Yang J, Li Z, Wang H (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060. doi: 10.1016/j.carbpol.2013.09.102 PubMedCrossRefGoogle Scholar
  73. Huang J, Gu Y (2011) Self-assembly of various guest substrates in natural cellulose substances to functional nanostructured materials. Curr Opin Colloid Interface Sci 16:470–481. doi: 10.1016/j.cocis.2011.08.004 CrossRefGoogle Scholar
  74. Huang H-C, Chen L-C, Lin S-B, Hsu C-P, Chen H-H (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101:6084–6091. doi: 10.1016/j.biortech.2010.03.031 PubMedCrossRefGoogle Scholar
  75. Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ (2006) Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27:4661–4670. doi: 10.1016/j.biomaterials.2006.04.032 PubMedCrossRefGoogle Scholar
  76. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose - a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRefGoogle Scholar
  77. Indrarti L, Yudianti R, Amurwabumi K, Yuli N (1998) Application of biocellulose as acoustic membrane. Indones J Biotechnol :180–184Google Scholar
  78. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401. doi: 10.1021/mp900056g PubMedCrossRefGoogle Scholar
  79. Jeong SI, Lee SE, Yang H, Jin YH, Park CS, Park YS (2010) Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol Cell Toxicol 6:373–380CrossRefGoogle Scholar
  80. Johnson and Johnson (1980) Microbial polysaccharide articles and methods of production US Patent 4,655,758Google Scholar
  81. Jung JY, Khan T, Park JK, Chang HN (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean J Chem Eng 24:265–271CrossRefGoogle Scholar
  82. Jung R, Kim Y, Kim H-S, Jin HJ (2009) Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles. J Biomater Sci Polym Ed 20:311–324. doi: 10.1163/156856209X412182 PubMedCrossRefGoogle Scholar
  83. Kalashnikova I, Cathala B, Capron I (2011) New pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 27:7471–7479. doi: 10.1021/la200971f PubMedCrossRefGoogle Scholar
  84. Kawano S, Tajima K, Uemori Y, Yamashita H, Erata T (2002) Cloning of cellulose synthesis related genes from Acetobacter xylinum ATCC23769 and ATCC53582: comparison of cellulose synthetic ability between strains. DNA Res 9:149–156. doi: 10.1093/dnares/9.5.149 PubMedCrossRefGoogle Scholar
  85. Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotechnol. doi: 10.4172/2155-9821.1000150 Google Scholar
  86. Keshk S, Sameshima K (2006) The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol 72:291–296. doi: 10.1007/s00253-005-0265-6 PubMedCrossRefGoogle Scholar
  87. Keshk SMAS, Razek TMA, Sameshima K (2006) Bacterial Cellulose Production from Beet Molasses. Afr J Biotechnol 5:1519–1523Google Scholar
  88. Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C (2010) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18:739–744. doi: 10.1007/s10965-010-9470-9 CrossRefGoogle Scholar
  89. Kim GD, Yang H, Park HR, Park CS, Park YS, Lee SE (2013) Evaluation of immunoreactivity of in vitro and in vivo models against bacterial synthesized cellulose to be used as a prosthetic biomaterial. BioChip J 7:201–209. doi: 10.1007/s13206-013-7302-9 CrossRefGoogle Scholar
  90. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose synthesized artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRefGoogle Scholar
  91. Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Marsch S, Gesichtschirurgie K, Chirurgie P, Jena F, Allee EVPJ (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96CrossRefGoogle Scholar
  92. Kouda T, Yano H, Yoshinaga F (1997) Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture. J Ferment Bioeng 83:371–376. doi: 10.1016/S0922-338X(97)80144-4 CrossRefGoogle Scholar
  93. Kowalska-Ludwicka K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M, Bielecki S, Pasieka Z (2013) Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci 9:527–534. doi: 10.5114/aoms.2013.33433 PubMedCentralPubMedCrossRefGoogle Scholar
  94. Krontiras P, Gatenholm P, Hägg DA (2014) Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. J Biomed Mater Res B Appl Biomater :1–9. doi: 10.1002/jbm.b.33198
  95. Kumar V (2004) Regenerated cellulose and oxidized cellulose membranes as potential biodegradable platforms for drug delivery and tissue engineering. US Patent 6,800,75Google Scholar
  96. Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333–335. doi: 10.1016/j.carbpol.2008.11.009 CrossRefGoogle Scholar
  97. Lee KY, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 69:2724–2733. doi: 10.1016/j.compscitech.2009.08.016 CrossRefGoogle Scholar
  98. Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32. doi: 10.1002/mabi.201300298 PubMedCrossRefGoogle Scholar
  99. Legendre JY (2009) Assembly comprising a substrate comprising biocellulose, and a powdered cosmetic composition to be brought into contact with the substrate. US Patent 2009/0041815Google Scholar
  100. Legeza VI, Galenko-Yaroshevskii VP, Zinov’ev EV, Paramonov BA, Kreichman GS, Turkovskii II, Gumenyuk ES, Karnovich AG, Khripunov AK (2004) Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull Exp Biol Med 138:311–315. doi: 10.1007/s10517-005-0029-4 PubMedCrossRefGoogle Scholar
  101. Leitão AF, Gupta S, Pedro J, Reviakine I, Gama M (2013) Hemocompatibility study of a bacterial cellulose / polyvinyl alcohol nanocomposite. Colloids Surf B: Biointerfaces 111:493–502PubMedCrossRefGoogle Scholar
  102. Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2, 3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29:1635–1642. doi: 10.1016/j.msec.2009.01.006 CrossRefGoogle Scholar
  103. Li HX, Kim S-J, Lee Y-W, Kee CD, Oh IK (2011a) Determination of the stoichiometry and critical oxygen tension in the production culture of bacterial cellulose using saccharified food wastes. Korean J Chem Eng 28:2306–2311. doi: 10.1007/s11814-011-0111-8 CrossRefGoogle Scholar
  104. Li Z, Zhu BJ, Yang JX, Peng K, Zhou BH, Xu RQ (2011b) Method for manufacture of bacterial cellulose hydrogel cold pack. CN Patent 201020239963.4Google Scholar
  105. Limaye S, Subramanian S, Evans B, O’Neill H (2009) Photoactivated antimicrobial wound dressing and method relating thereto. US Patent 20090209897 A1Google Scholar
  106. Lin KW, Lin HY (2004) Quality characteristics of chinese-style meatball containing bacterial cellulose (Nata). J Food Sci 69:107–111. doi: 10.1111/j.1365-2621.2004.tb13378.x Google Scholar
  107. Lin ZD, Zhang XJ (2009) Method for preparing bacterial cellulose composite as filling and repairing material for human bone damage. CN Patent 200910036754.1Google Scholar
  108. Lin YK, Chen KH, Ou KL (2011a) Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J Bioact Compat Polym 26:508–518. doi: 10.1177/0883911511415390 CrossRefGoogle Scholar
  109. Lin YC, Wey YC, Lee ML (2011b) Bacterial cellulose film and uses as skin substitutes. US Patent 20110286948 A1Google Scholar
  110. Lin SP, Loira Calvar I, Catchmark JM, Liu JR, Demirci A, Cheng KC (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219. doi: 10.1007/s10570-013-9994-3 CrossRefGoogle Scholar
  111. Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113–119. doi: 10.1016/j.biortech.2013.10.052 PubMedCrossRefGoogle Scholar
  112. Liu XZ, Liu ZL, Jiang ZM, Zhang CZ (2011) Process for preparation of artificial endocranium. CN Patent 201010563139.9Google Scholar
  113. Lu H, Jiang X (2014) Structure and properties of bacterial cellulose produced using a trickling bed reactor. Appl Biochem Biotechnol 172:3844–3861. doi: 10.1007/s12010-014-0795-4 PubMedCrossRefGoogle Scholar
  114. Luiz CSM, Ana LC, Philippe C, Aline SS, Hernane S, Sidney JL, Maria LCS, Santos ALC, Oliveira PC, Valle ASS (2010) Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polímeros 20:72–77CrossRefGoogle Scholar
  115. Ma X, Wang RM, Guan FM, Wang TF (2010) Artificial dura mater made from bacterial cellulose and polyvinyl alcohol. CN Patent ZL200710015537.5Google Scholar
  116. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51. doi: 10.1016/j.carbpol.2007.07.025 CrossRefGoogle Scholar
  117. Martínez H, Brackmann C, Enejder A, Gatenholm P (2012) Mechanical stimulation of fibroblasts in micro-channeled bacterial cellulose scaffolds enhances production of oriented collagen fibers. J Biomed Mater Res A 100:948–957. doi: 10.1002/jbm.a.34035 PubMedCrossRefGoogle Scholar
  118. McKenna BA, Mikkelsen D, Wehr JB, Gidley MJ, Menzies NW (2009) Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524. Cellulose 16:1047–1055. doi: 10.1007/s10570-009-9340-y CrossRefGoogle Scholar
  119. Mello LR, Feltrin LT, Neto PTF, Ferraz FAP (1997) Duraplasty with biosynthetic cellulose: an experimental study. J Neurosurg 86:143–150PubMedCrossRefGoogle Scholar
  120. Mendes PN, Rahal SC, Pereira-Junior OCM, Fabris VE, Lenharo SLR, de Lima-Neto JF, da Cruz Landim-Alvarenga F (2009) In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair. Acta Vet Scand 51:12. doi: 10.1186/1751-0147-51-12 PubMedCentralPubMedCrossRefGoogle Scholar
  121. Millon LE, Wan WK (2006) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res Part B Appl Biomater 79:245–253PubMedCrossRefGoogle Scholar
  122. Millon LE, Guhados G, Wan W (2008) Anisotropic polyvinyl alcohol-Bacterial cellulose nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 86:444–452. doi: 10.1002/jbm.b.31040 PubMedCrossRefGoogle Scholar
  123. Mohammadi H (2011) Nanocomposite biomaterial mimicking aortic heart valve leaflet mechanical behaviour. Proc Inst Mech Eng H J Eng Med 225:718–722. doi: 10.1177/0954411911399826 CrossRefGoogle Scholar
  124. Mohd Amin MCI, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/ acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473. doi: 10.1016/j.carbpol.2011.12.022 CrossRefGoogle Scholar
  125. Moosavi-nasab M, Yousefi AR, Askari H, Bakhtiyari M (2010) Fermentative production and characterization of carboxymethyl bacterial cellulose using date syrup. World Acad Sci Eng Technol 68:1467–1471Google Scholar
  126. Moreira S, Silva NB, Almeida-Lima J, Rocha HAO, Medeiros SRB, Alves C, Gama FM (2009) BC nanofibres: in vitro study of genotoxicity and cell proliferation. Toxicol Lett 189:235–241. doi: 10.1016/j.toxlet.2009.06.849 PubMedCrossRefGoogle Scholar
  127. Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–186. doi: 10.1038/nature11744 PubMedCentralPubMedCrossRefGoogle Scholar
  128. Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A 80:93–97. doi: 10.1007/s00339-004-2932-3 CrossRefGoogle Scholar
  129. Nakamura K, Nakamura K (2011) Antibacterial mask comprising bacterial cellulose and silver compounds, antibacterial filter for mask, and disinfection method. JP Patent 2011167226Google Scholar
  130. Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128. doi: 10.1002/adfm.200305197 CrossRefGoogle Scholar
  131. Nge TT, Nogi M, Yano H, Sugiyama J (2010) Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold. Cellulose 17:349–363. doi: 10.1007/s10570-009-9394-x CrossRefGoogle Scholar
  132. Nguyen VT, Flanagan B, Gidley MJ, Dykes GA (2008) Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr Microbiol 57:449–453. doi: 10.1007/s00284-008-9228-3 PubMedCrossRefGoogle Scholar
  133. Nimeskern L, Martínez Ávila H, Sundberg J, Gatenholm P, Müller R, Stok KS (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21. doi: 10.1016/j.jmbbm.2013.03.005 PubMedCrossRefGoogle Scholar
  134. Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 25:2997–3001CrossRefGoogle Scholar
  135. Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588. doi: 10.1038/nnano.2010.155 PubMedCrossRefGoogle Scholar
  136. Oshima T, Kondo K, Ohto K, Inoue K, Baba Y (2008) Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. React Funct Polym 68:376–383. doi: 10.1016/j.reactfunctpolym.2007.07.046 CrossRefGoogle Scholar
  137. Oshima T, Taguchi S, Ohe K, Baba Y (2011) Phosphorylated bacterial cellulose for adsorption of proteins. Carbohydr Polym 83:953–958. doi: 10.1016/j.carbpol.2010.09.005 CrossRefGoogle Scholar
  138. Oster GA, Lantz K, Koehler K, Hoon R, Serafica G, Mormino R (2003) Solvent dehydrated microbially derived cellulose for in vivo implantation. U.S. Patent 6,599, 518Google Scholar
  139. Paknikar KM (2009) Stabilizing solutions for submicronic particles, methods for making the same and methods of stabilizing submicronic particles USA (Patent No.7514600), Eurasia (Patent No. 010338), China (Patent No. 1950142), South Africa (Patent No. 2006/08551), Sri Lanka (Patent No. 14287), Singapore (Patent No. 127299)Google Scholar
  140. Paknikar KM, Rajwade JM, Soni RN (2013) Therapeutic applications of silver nanoparticles, In: Chaughule RS, Watawe SC (eds) Applications of Nanomaterials, American Scientific Publishers, ISBN:1-58883-181-7, p 205–215Google Scholar
  141. Pandey M, Cairul M, Mohd I, Ahmad N, Abeer MM (2013) Rapid synthesis of superabsorbent smart-swelling bacterial cellulose / acrylamide-based hydrogels for drug delivery. Int J Polym Sci 905471Google Scholar
  142. Patel UD, Suresh S (2008) Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactor. J Colloid Interface Sci 319:462–469. doi: 10.1016/j.jcis.2007.12.019 PubMedCrossRefGoogle Scholar
  143. Pertile RAN, Andrade FK, Alves C, Gama M (2010) Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells. Carbohydr Polym 82:692–698. doi: 10.1016/j.carbpol.2010.05.037 CrossRefGoogle Scholar
  144. Pértile R, Moreira S, Andrade F, Domingues L, Gama M (2012) Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnol Prog 28:526–532. doi: 10.1002/btpr.1501 PubMedCrossRefGoogle Scholar
  145. Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286. doi: 10.1007/s00253-011-3432-y PubMedCrossRefGoogle Scholar
  146. Pinto RJB, Marques PAAP, Neto CP, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5:2279–2289. doi: 10.1016/j.actbio.2009.02.003 PubMedCrossRefGoogle Scholar
  147. Quero F, Nogi M, Yano H, Abdulsalami K, Holmes SM, Sakakini BH, Eichhorn SJ (2010) Optimization of the mechanical performance of bacterial cellulose/poly(L-lactic) acid composites. ACS Appl Mater Interfaces 2:321–330. doi: 10.1021/am900817f PubMedCrossRefGoogle Scholar
  148. Quirke V, Gaudillie`re JP (2008) The era of biomedicine: science, medicine, and public health in Britain and France after the Second World War. Med Hist 52:441–452PubMedCentralPubMedCrossRefGoogle Scholar
  149. Recouvreux DOS, Rambo CR, Berti FV, Carminatti CA, Antônio RV, Porto LM (2011) Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration. Mater Sci Eng C 31:151–157. doi: 10.1016/j.msec.2010.08.004 CrossRefGoogle Scholar
  150. Retegi A, Gabilondo N, Peña C, Zuluaga R, Castro C, Gañan P, de la Caba K, Mondragon I (2010) Bacterial cellulose films with controlled microstructure-mechanical property relationships. Cellulose 17:661–669. doi: 10.1007/s10570-009-9389-7 CrossRefGoogle Scholar
  151. Rezaee A, Godini H, Bakhtou H (2008) Microbial cellulose as support material for the immobilization of denitrifying bacteria. Environ Eng Manag J 7:589–594Google Scholar
  152. Romling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212PubMedCrossRefGoogle Scholar
  153. Ross P, Mayer R, Benziman M (1991) Cellulose Biosynthesis and Function in Bacteria. Microbiol Rev 55:35–58PubMedCentralPubMedGoogle Scholar
  154. Rouabhia M, Asselin J, Tazi N, Messaddeq Y, Levinson D, Zhang Z (2014) Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl Mater Interfaces 6:1439–1446. doi: 10.1021/am4027983 PubMedCrossRefGoogle Scholar
  155. Saska S, Barud HS, Gaspar AMM, Marchetto R, Ribeiro SJL, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:175362. doi: 10.1155/2011/175362 PubMedCentralPubMedCrossRefGoogle Scholar
  156. Saska S, Scarel-Caminaga RM, Teixeira LN, Franchi LP, Dos Santos RA, Gaspar AMM, de Oliveira PT, Rosa AL, Takahashi CS, Messaddeq Y, Ribeiro SJL, Marchetto R (2012) Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. J Mater Sci Mater Med 23:2253–2266. doi: 10.1007/s10856-012-4676-5 PubMedCrossRefGoogle Scholar
  157. Schönfelder U, Abel M, Wiegand C, Klemm D, Elsner P, Hipler U-C (2005) Influence of selected wound dressings on PMN elastase in chronic wound fluid and their antioxidative potential in vitro. Biomaterials 26:6664–6673. doi: 10.1016/j.biomaterials.2005.04.030 PubMedCrossRefGoogle Scholar
  158. Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/ liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129. doi: 10.1099/00221287-11-1-123 PubMedCrossRefGoogle Scholar
  159. Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H, Wahlers T, Salehi-Gelani S (2009) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16:877–885. doi: 10.1007/s10570-008-9264-y CrossRefGoogle Scholar
  160. Shah J, Brown RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352–355. doi: 10.1007/s00253-004-1756-6 PubMedCrossRefGoogle Scholar
  161. Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang H, Wang Z (2012) The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic. Biomaterials 33:6644–6649PubMedCrossRefGoogle Scholar
  162. Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545CrossRefGoogle Scholar
  163. Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8CrossRefGoogle Scholar
  164. Silva NHCS, Rodrigues AF, Almeida IF, Costa PC, Rosado C, Neto CP, Silvestre AJD, Freire CSR (2014) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohydr Polym 106:264–269. doi: 10.1016/j.carbpol.2014.02.014 PubMedCrossRefGoogle Scholar
  165. Silvestre AJD, Freire CSR, Neto CP (2014) Do bacterial cellulose membranes have potential in drug-delivery systems? Expert Opin Drug Deliv 11:1113–1124. doi: 10.1517/17425247.2014.920819 PubMedCrossRefGoogle Scholar
  166. Solway DR, Consalter M (2010) Microbial cellulose wound dressing in the treatment of skin tears in the frail elderly. Wounds 22:17–19PubMedGoogle Scholar
  167. Solway DR, Clark WA, Levinson DJ (2011) A parallel open-label trial to evaluate microbial cellulose wound dressing in the treatment of diabetic foot ulcers. Int Wound J 8:69–73. doi: 10.1111/j.1742-481X.2010.00750.x PubMedCrossRefGoogle Scholar
  168. Spaic M, Small DP, Cook JR, Wan W (2014) Characterization of anionic and cationic functionalized bacterial cellulose nanofibres for controlled release applications. Cellulose 21:1529–1540. doi: 10.1007/s10570-014-0174-x CrossRefGoogle Scholar
  169. Stoica-Guzun A, Stroescu M, Tache F, Zaharescu T, Grosu E (2007) Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems. Nucl Instrum Methods B 265:434–438. doi: 10.1016/j.nimb.2007.09.036 CrossRefGoogle Scholar
  170. Stoica-Guzun A, Stroescu M, Jipa I, Dobre L, Jinga S, Zaharescu T (2012) The Effect of UV-Irradiation on Poly(vinyl alcohol) Composites with Bacterial Cellulose. Macromol Symp 315:198–204. doi: 10.1002/masy.201250524 CrossRefGoogle Scholar
  171. Surma-ślusarska B, Presler S (2008) Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibres Text East Eur 16:108–111Google Scholar
  172. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431. doi: 10.1016/j.biomaterials.2004.02.049 PubMedCrossRefGoogle Scholar
  173. Tamahkar E, Babaç C, Kutsal T, Pişkin E, Denizli A (2010) Bacterial cellulose nanofibers for albumin depletion from human serum. Process Biochem 45:1713–1719. doi: 10.1016/j.procbio.2010.07.007 CrossRefGoogle Scholar
  174. Tanaka ML, Vest N, Ferguson CM, Gatenholm P (2014) Comparison of biomechanical properties of native menisci and bacterial cellulose implant. Int J Polym Mater 63:891–897. doi: 10.1080/00914037.2014.886226 CrossRefGoogle Scholar
  175. Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131. doi: 10.1007/s11274-009-0151-y CrossRefGoogle Scholar
  176. Tanskul S, Amornthatree K, Jaturonlak N (2013) A new cellulose producing bacterium, Rhodococcus sp. MI 2: screening and optimization of culture conditions. Carbohydr Polym 92:421–428. doi: 10.1016/j.carbpol.2012.09.017 PubMedCrossRefGoogle Scholar
  177. Tazi N, Zhang Z, Messaddeq Y, Almeida-Lopes L, Zanardi LM, Levinson D, Rouabhia M (2012) Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. AMB Express 2:61. doi: 10.1186/2191-0855-2-61 PubMedCentralPubMedCrossRefGoogle Scholar
  178. Thompson DN, Hamilton MA (2001) Production of bacterial cellulose from alternate feedstocks. Appl Biochem Biotechnol 91:503–513. doi: 10.1385/ABAB:91-93:1-9:503 PubMedCrossRefGoogle Scholar
  179. Torres FG, Commeaux S, Troncoso OP (2012) Biocompatibility of bacterial cellulose based biomaterials. J Funct Biomater 3:864–878. doi: 10.3390/jfb3040864 PubMedCentralPubMedCrossRefGoogle Scholar
  180. Tournilhac FC, Lorant R (2000) Composition in the form of an oil-in-water emulsion containing cellulose fibrils, and its uses, especially cosmetic uses US Patent No 6,534,071Google Scholar
  181. Trovatti E, Silva NHCS, Duarte IF, Rosado CF, Almeida IF, Costa P, Freire CSR, Silvestre AJD, Neto CP (2011) Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules 12:4162–4168. doi: 10.1021/bm201303r PubMedCrossRefGoogle Scholar
  182. Trovatti E, Freire CSR, Pinto PC, Almeida IF, Costa P, Silvestre AJD, Neto CP, Rosado C (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 435:83–87. doi: 10.1016/j.ijpharm.2012.01.002 PubMedCrossRefGoogle Scholar
  183. Ul-Islam M, Shah N, Ha JH, Park JK (2011) Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean J Chem Eng 28:1736–1743. doi: 10.1007/s11814-011-0042-4 CrossRefGoogle Scholar
  184. Wan W, Millon L (2005) Poly(vinyl alcohol) - bacterial cellulose nano-composite. US Patent 2005/0037082 A1Google Scholar
  185. Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng C 27:855–864. doi: 10.1016/j.msec.2006.10.002 CrossRefGoogle Scholar
  186. Wan YZ, Luo H, He F, Liang H, Huang Y, Li XL (2009a) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 69:1212–1217. doi: 10.1016/j.compscitech.2009.02.024 CrossRefGoogle Scholar
  187. Wan YZ, Li YY, He F, Huang Y, Luo H L, Liang H (2009b) Method for preparing bacterial cellulose-heparin composite against blood coagulation. CN Patent 200910067684.6Google Scholar
  188. Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218. doi: 10.1016/j.msec.2009.10.006 CrossRefGoogle Scholar
  189. Wang X, Sun DP, He HM, Yang J Z (2011) Method for preparing antibacterial wound healing-promoting dressing. CN Patent 201010139908.2Google Scholar
  190. Wang J, Wan YZ, Luo HL, Gao C, Huang Y (2012) Immobilization of gelatin on bacterial cellulose nanofibers surface via crosslinking technique. Mater Sci Eng C 32:536–541. doi: 10.1016/j.msec.2011.12.006 CrossRefGoogle Scholar
  191. Wang H, Bian L, Zhou P, Tang J, Tang W (2013) Core-sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J Mater Chem A 1:578. doi: 10.1039/c2ta00040g CrossRefGoogle Scholar
  192. Wanna D, Alam C, Toivola DM, Alam P (2013) Bacterial cellulose-kaolin nanocomposites for application as biomedical wound healing materials. Adv Nat Sci Nanosci Nanotechnol 4:045002. doi: 10.1088/2043-6262/4/4/045002 CrossRefGoogle Scholar
  193. Watanabe K, Eto Y, Takano S, Nakamori S, Shibai H, Yamanaka S (1993) A new bacterial cellulose substrate for mammalian cell culture. Cytotechnology 13:107–114PubMedCrossRefGoogle Scholar
  194. Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200CrossRefGoogle Scholar
  195. Wei J, Yoshinari M, Takemoto S, Hattori M, Kawada E, Liu B, Oda Y (2006) Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability. J Biomed Mater Res B Appl Biomater 81:66–75. doi: 10.1002/jbmb Google Scholar
  196. Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538. doi: 10.1016/j.carbpol.2010.12.017 CrossRefGoogle Scholar
  197. Wiegand C, Elsner P, Hipler U-C, Klemm D (2006) Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro. Cellulose 13:689–696. doi: 10.1007/s10570-006-9073-0 CrossRefGoogle Scholar
  198. Williams WS, Cannon RE, Williamst WS (1989) Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl Environ Microbiol 55:2448–2452PubMedCentralPubMedGoogle Scholar
  199. Wippermann J, Schumann D, Klemm D, Kosmehl H, Salehi-Gelani S, Wahlers T (2009) Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovasc Surg 37:592–596. doi: 10.1016/j.ejvs.2009.01.007 PubMedCrossRefGoogle Scholar
  200. Wu JM, Liu R-H (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90:116–121. doi: 10.1016/j.carbpol.2012.05.003 PubMedCrossRefGoogle Scholar
  201. Wu SC, Lia YK, Ho CY (2013a) Glucoamylase immobilization on bacterial cellulose using periodate oxidation method. Int J Sci Eng 3:1–4. doi: 10.6159/IJSE.2013.(3-4).01
  202. Wu ZY, Li C, Liang H-W, Chen J-F, Yu S-H (2013b) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem Int Ed Engl 52:2925–2929. doi: 10.1002/anie.201209676 PubMedCrossRefGoogle Scholar
  203. Xu C, Ma X, Chen S, Tao M, Yuan L, Jing Y (2014) Bacterial cellulose membranes used as artificial substitutes for dural defection in rabbits. Int J Mol Sci 15:10855–10867. doi: 10.3390/ijms150610855 PubMedCentralPubMedCrossRefGoogle Scholar
  204. Yadav V, Sun L, Panilaitis B, Kaplan DL (2013) In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold. J Tissue Eng Regen Med. doi: 10.1002/term PubMedGoogle Scholar
  205. Yamada Y, Yukphan P, Lan Vu HT, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58:397–404. doi: 10.2323/jgam.58.397 PubMedCrossRefGoogle Scholar
  206. Yamanaka DS, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24(3141):3145Google Scholar
  207. Yamanaka S, Ono E, Watanabe K, Kusakabe M, Suzuki Y (1990) Hollow microbial cellulose, process for preparation thereof, and artificial blood vessel formed of said cellulose. European Patent No. 0396344Google Scholar
  208. Yang G, Fu L N, He F, Zhou P, Yu LJ (2010) Acetobacter xylinum Y05 and bio-fabrication of nano-cellulose material for skin tissue repairment. CN Patent ZL200810047793.7Google Scholar
  209. Yang C, Gao C, Wan Y, Tang T, Zhang S, Dai K (2011) Preparation and characterization of three-dimensional nanostructured macroporous bacterial cellulose/agarose scaffold for tissue engineering. J Porous Mater 18:545–552. doi: 10.1007/s10934-010-9407-z CrossRefGoogle Scholar
  210. Yang G, Xie J, Hong F, Cao Z, Yang X (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87:839–845. doi: 10.1016/j.carbpol.2011.08.079 CrossRefGoogle Scholar
  211. Yang Y, Jia J, Xing J, Chen J, Lu S (2013) Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohydr Polym 92:2012–2017. doi: 10.1016/j.carbpol.2012.11.065 PubMedCrossRefGoogle Scholar
  212. Yang J, Lv X, Chen S, Li Z, Feng C, Wang H, Xu Y (2014) In situ fabrication of a microporous bacterial cellulose/potato starch composite scaffold with enhanced cell compatibility. Cellulose 21:1823–1835. doi: 10.1007/s10570-014-0220-8 CrossRefGoogle Scholar
  213. Yao W, Wu X, Zhu J, Sun B, Zhang YY, Miller C (2011) Bacterial cellulose membrane - A new support carrier for yeast immobilization for ethanol fermentation. Process Biochem 46:2054–2058. doi: 10.1016/j.procbio.2011.07.006 CrossRefGoogle Scholar
  214. Yin N, Li Z, Wang HP, Chen SY, Hong F, Ouyang Y (2011) Method for manufacturing bacterial cellulose scaffolding material. CN Patent 201110191767Google Scholar
  215. Yin N, Chen S, Li Z, Ouyang Y, Hu W, Tang L, Zhang W, Zhou B, Yang J, Xu Q, Wang H (2012) Porous bacterial cellulose prepared by a facile surfactant-assisted foaming method in azodicarbonamide-NaOH aqueous solution. Mater Lett 81:131–134. doi: 10.1016/j.matlet.2012.04.133 CrossRefGoogle Scholar
  216. Yoshino A, Tabuchi M, Uo M, Tatsumi H, Hideshima K, Kondo S, Sekine J (2013) Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment. Acta Biomater 9:6116–6122PubMedCrossRefGoogle Scholar
  217. Zaborowska M, Bodin A, Bäckdahl H, Popp J, Goldstein A, Gatenholm P (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547. doi: 10.1016/j.actbio.2010.01.004 PubMedCrossRefGoogle Scholar
  218. Zakaria J, Nazeri M (2012) Optimization of bacterial cellulose production from pineapple waste: effect of temperature, pH and concentration. EnCon 2012, 5th Engineering Conference, “Engineering Towards Change - Empowering Green Solutions” 10-12th July 2012, Kuching SarawakGoogle Scholar
  219. Zang S, Zhuo Q, Chang X, Qiu G, Wu Z, Yang G (2014) Study of osteogenic differentiation of human adipose-derived stem cells (HASCs ) on bacterial cellulose. Carbohydr Polym 104:158–165PubMedCrossRefGoogle Scholar
  220. Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nano-fiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160. doi: 10.1002/adfm.200902104 CrossRefGoogle Scholar
  221. Zhang W, Wang BC, Zhou BH, Hu WL, Hong F, Chen SY (2012) Method for selectively loading antibacterial nanometer silver with bacterial cellulose. CN Patent 201110191828.6Google Scholar
  222. Zheng YD, Wu J, Gao S, Ding X, Cui Q Y, Yu Y (2012) Method for preparing collagen modified bacterial cellulose composite film. CN Patent 201110300494.1Google Scholar
  223. Zhijiang C, Guang Y (2011) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 120:2938–2944. doi: 10.1002/app.33318 CrossRefGoogle Scholar
  224. Zhijiang C, Chengwei H, Guang Y (2012) Poly(3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: preparation, characterization and biocompatibility evaluations. Carbohydr Polym 87:1073–1080. doi: 10.1016/j.carbpol.2011.08.037 CrossRefGoogle Scholar
  225. Zhong CY (2011) Method for manufacturing air-filtering bacterial cellulose face mask. CN Patent ZL200910149665.8Google Scholar
  226. Zhu H, Jia S, Yang H, Tang W, Jia Y, Tan Z (2010) Characterization of bacteriostatic sausage casing: a composite of bacterial cellulose embedded with ε- polylysine. Food Sci Biotechnol 19:1479–1484CrossRefGoogle Scholar
  227. Zhu C, Li F, Zhou X, Lin L, Zhang T (2014) Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation. J Biomed Mater Res A 102:1548–1557. doi: 10.1002/jbm.a.34796 PubMedCrossRefGoogle Scholar
  228. Zimmermann K, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31:43–49. doi: 10.1016/j.msec.2009.10.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • J. M. Rajwade
    • 1
  • K. M. Paknikar
    • 1
  • J. V. Kumbhar
    • 1
  1. 1.Centre for NanobioscienceAgharkar Research InstitutePuneIndia

Personalised recommendations