Applied Microbiology and Biotechnology

, Volume 99, Issue 5, pp 2277–2289 | Cite as

Genomic analysis of Brevibacillus thermoruber 423 reveals its biotechnological and industrial potential

  • Songul Yasar Yildiz
  • Nadja Radchenkova
  • Kazim Yalcin Arga
  • Margarita Kambourova
  • Ebru Toksoy Oner
Genomics, transcriptomics, proteomics

Abstract

Brevibacillus thermoruber 423 is a Gram-positive, motile, red-pigmented, spore-forming, aerobic, and thermophilic bacterium that is known to produce high levels of exopolysaccharide (EPS) with many potential uses in food, feed, cosmetics, and pharmaceutical and chemical industries. This bacterium not only is among the limited number of reported thermophilic EPS producers but also exceeds other thermophilic producers in light of the high level of polymer synthesis. By a systems-based approach, whole-genome analysis of this bacterium was performed to gain more insight about the biological mechanisms and whole-genome organization of thermophilic EPS producers and hence to develop rational strategies for the genetic and metabolic optimization of EPS production. Also with this study, the first genome analysis was performed on a thermophilic Brevibacillus species. Essential genes associated with EPS biosynthesis were detected by genome annotation, and together with experimental evidences, a hypothetical mechanism for EPS biosynthesis was generated. B. thermoruber 423 was found to have many potential applications in biotechnology and industry because of its capacity to utilize xylose and to produce EPS, isoprenoids, ethanol/butanol, lipases, proteases, cellulase, and glucoamylase enzymes as well as its resistance to arsenic.

Keywords

Brevibacillus thermoruber Thermophiles Genome Next-generation sequencing Exopolysaccharide 

Notes

Acknowledgments

This research has been conducted under infrastructure built via financial support by the Scientific and Technological Research Council of Turkey (TUBITAK) through grants 111 T016 and 110 M613, and by Marmara University through project FEN-C-DRP-110913-0380.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

253_2015_6388_MOESM1_ESM.pdf (7 mb)
ESM 1(PDF 7130 kb)

References

  1. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, De Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603. doi:10.1093/nar/gks400 CrossRefPubMedCentralPubMedGoogle Scholar
  2. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. doi:10.1186/1471-2164-9-75 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Baek DH, Kwon SJ, Hong SP, Kwak MS, Lee MH, Song JJ, Lee SG, Yoon KH, Sung MH (2003) Characterization of a thermostable D-stereospecific alanine amidase from Brevibacillus borstelensis BCS-1. Appl Environ Microbiol 69:980–986. doi:10.1128/AEM. 69.2.980-986.2003 CrossRefPubMedCentralPubMedGoogle Scholar
  4. Beckering CL, Steil L, Weber MH, Völker U, Marahiel MA (2002) Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol 184:6395–6402CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bergquist PL, Morgan HW, Saul D (2014) Selected enzymes from extreme thermophiles with applications in biotechnology. Curr Biotechnol 3:45–59. doi:10.2174/2211550102999131230150918 CrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  7. Caipang CMA, Verjan N, Ooi EL, Kondo H, Hirono I, Aoki T, Kiyono H, Yuki Y (2008) Enhanced survival of shrimp, Penaeus (Marsupenaeus) japoni from white spot syndrome disease after oral administration of recombinant VP28 expressed in Brevibacillus brevis. Fish Shellfish Immunol 25:315–320. doi:10.1016/j.fsi.2008.04.012 CrossRefPubMedGoogle Scholar
  8. Chang MC, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681. doi:10.1038/nchembio836 CrossRefPubMedGoogle Scholar
  9. Chapot-Chartier M-P (2014) Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages. Front Microbiol 5:236. doi:10.3389/fmicb.2014.00236 PubMedCentralPubMedGoogle Scholar
  10. Che J, Liu B, Lin Y, Tang W, Tang J (2013) Draft genome sequence of biocontrol bacterium Brevibacillus brevis strain FJAT-0809-GLX. Genome Announc 1:e00160–00113. doi:10.1128/genomeA. 00160-13 PubMedCentralPubMedGoogle Scholar
  11. Chen W, Wang Y, Li D, Li L, Xiao Q, Zhou Q (2012) Draft genome sequence of Brevibacillus brevis strain X23, a biocontrol agent against bacterial wilt. J Bacteriol 194:6634–6635. doi:10.1128/JB.01312-12 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Djukic M, Poehlein A, Thürmer A, Daniel R (2011) Genome sequence of Brevibacillus laterosporus LMG 15441, a pathogen of invertebrates. J Bacteriol 193:5535–5536. doi:10.1128/JB.05696-11 CrossRefPubMedCentralPubMedGoogle Scholar
  13. Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017 CrossRefGoogle Scholar
  14. Franklin MJ, Nivens DE, Weadge JT, Howell PL (2011) Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 2:167. doi:10.3389/fmicb.2011.00167 PubMedCentralPubMedGoogle Scholar
  15. Goto K, Fujita R, Kato Y, Asahara M, Yokota A (2004) Reclassification of Brevibacillus brevis strains NCIMB 13288 and DSM 6472 (= NRRL NRS-887) as Aneurinibacillus danicus sp. nov. and Brevibacillus limnophilus sp. nov. IJSEM 54:419–427. doi:10.1099/ijs. 0.02906-0 PubMedGoogle Scholar
  16. Hamza HM, Ali SM, Hassan HG (2006) Partial purification of gelatinase enzyme from local isolate of Brevibacillus laterosporus. Iraqi National J Chem 23:437–442Google Scholar
  17. Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273. doi:10.1038/nrmicro2109 CrossRefPubMedGoogle Scholar
  18. Hoffmann T, Wensing A, Brosius M, Steil L, Völker U, Bremer E (2013) Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. J Bacteriol 195:510–522CrossRefPubMedCentralPubMedGoogle Scholar
  19. Hugon P, Mishra AK, Lagier J-C, Nguyen TT, Couderc C, Raoult D, Fournier P-E (2013) Non-contiguous finished genome sequence and description of Brevibacillus massiliensis sp. nov. Stand Genomic Sci 8:1–14. doi:10.4056/sigs.3466975 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Inan K, Canakci S, Belduz AO, Sahin F (2012) Brevibacillus aydinogluensis sp. nov., a moderately thermophilic bacterium isolated from Karakoc hot spring. IJSEM 62:849–855. doi:10.1099/ijs. 0.031914-0 PubMedGoogle Scholar
  21. Ishihara T, Tomita H, Hasegawa Y, Tsukagoshi N, Yamagata H, Udaka S (1995) Cloning and characterization of the gene for a protein thiol-disulfide oxidoreductase in Bacillus brevis. J Bacteriol 177:745–749PubMedCentralPubMedGoogle Scholar
  22. Joshi M, Sharma A, Pandit A, Pandya R, Saxena A, Bagatharia S (2013) Draft genome sequence of Brevibacillus sp. strain BAB-2500, a strain that might play an important role in agriculture. Genome Announc 1:e00021–00013. doi:10.1128/genomeA. 00021-13 PubMedCentralPubMedGoogle Scholar
  23. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114. doi:10.1093/nar/gkr988 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Kappes RM, Kempf B, Bremer E (1996) Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J Bacteriol 178:5071–5079PubMedCentralPubMedGoogle Scholar
  25. Kumar L, Awasthi G, Singh B (2011) Extremophiles: a novel source of industrially important enzymes. Biotechnol 10:121–135. doi:10.3923/biotech.2011.121.135 CrossRefGoogle Scholar
  26. Lee AYL, Hsu CH, Wu SH (2004) Functional domains of Brevibacillus thermoruber Lon protease for oligomerization and DNA binding role of N-terminal and sensor and substrate discrimination domains. J Biol Chem 279:34903–34912. doi:10.1074/jbc.M403562200 CrossRefPubMedGoogle Scholar
  27. Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S (2007) A cyclic‐di‐GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65:1474–1484. doi:10.1111/j.1365-2958.2007.05879.x CrossRefPubMedCentralPubMedGoogle Scholar
  28. Lloyd JR (2010) Microbial transformations of arsenic in aquifers. In: Sun H (ed) Biological chemistry of arsenic, antimony and bismuthi. Wiley, New York, NY, pp 135–143CrossRefGoogle Scholar
  29. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18. doi:10.1186/2047-217X-1-18 CrossRefPubMedCentralPubMedGoogle Scholar
  30. Manachini P, Fortina M, Parini C, Craveri R (1985) Bacillus thermoruber sp. nov., nom. rev., a red-pigmented thermophilic bacterium. Int J Sys Bacteriol 35:493–496. doi:10.1099/00207713-35-4-493 CrossRefGoogle Scholar
  31. Miele V, Penel S, Duret L (2011) Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinformatics 22:12–116. doi:10.1186/1471-2105-12-116 Google Scholar
  32. Nicholson W (2002) Roles of Bacillus endospores in the environment. Cell Mol Life Sci 59(3):410–416CrossRefPubMedGoogle Scholar
  33. Nicolaus B, Kambourova M, Toksoy Oner T (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158. doi:10.1080/09593330903552094 CrossRefPubMedGoogle Scholar
  34. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biot 28:56–63. doi:10.1038/sj/jim/7000176 CrossRefGoogle Scholar
  35. Panda AK, Bisht SS, DeMondal S, Kumar NS, Gurusubramanian G, Panigrahi AK (2014) Brevibacillus as a biological tool: a short review. Antonie Van Leeuwenhoek 105:623–639. doi:10.1007/s10482-013-0099-7 CrossRefPubMedGoogle Scholar
  36. Poli A, Kazak H, Gürleyendağ B, Tommonaro G, Pieretti G, Toksoy Oner E, Nicolaus B (2009) High level synthesis of levan by a novel Halomonas species growing on defined media. Carbohydr Polym 78:651–657. doi:10.1016/j.carbpol.2009.05.031 CrossRefGoogle Scholar
  37. Rehm BH (2009) Microbial production of biopolymers and polymer precursors: applications and perspectives. Horizon Scientific Press, Wymondham, Norfolk, UKGoogle Scholar
  38. Sharma V, Singh PK, Midha S, Ranjan M, Korpole S, Patil PB (2012) Genome sequence of Brevibacillus laterosporus strain GI-9. J Bacteriol 194:1279–1279. doi:10.1128/JB.06659-11 CrossRefPubMedCentralPubMedGoogle Scholar
  39. Sharma G, Prakash D, Gupta C, Prakash D, Sharma G (2014) Phytochemicals of nutraceutical importance: do they defend against diseases? In: Prakash D, Sharma G (eds) Phytochemicals of nutraceutical importance. CABI, Boston, MA, pp 1–23Google Scholar
  40. Shida O, Takagi H, Kadowaki K, Udaka S, Nakamura LK, Komagata K (1995) Proposal of Bacillus reuszeri sp. nov., Bacillus formosus sp. nov., nom. rev., and Bacillus borstelensis sp. nov., nom. rev. Int J Syst Bacteriol 45:93–100. doi:10.1099/00207713-45-1-93 CrossRefGoogle Scholar
  41. Shih T-W, Pan T-M (2011) Stress responses of thermophilic Geobacillus sp. NTU 03 caused by heat and heat-induced stress. Microbiol Res 166:346–359CrossRefPubMedGoogle Scholar
  42. Sridevi N, Prabhune A (2009) Brevibacillus sp: a novel thermophilic source for the production of bile salt hydrolase. Appl Biochem Biotechnol 157:254–262. doi:10.1007/s12010-008-8326-9 CrossRefPubMedGoogle Scholar
  43. Sutherland IW (2007) Bacterial exopolysaccharides. In: Kamerling JP (ed) Comprehensive glycoscience. Elsevier, Amsterdam, The Netherlands, pp 521–557CrossRefGoogle Scholar
  44. Suzuki Y, Matsui H, Tsujimoto Y, Watanabe K (2009) Enzymatic degradation of fibroin fiber by a fibroinolytic enzyme of Brevibacillus thermoruber YAS-1. J Biosci Bioeng 108:211–215. doi:10.1016/j.jbiosc.2009.04.005 CrossRefPubMedGoogle Scholar
  45. Toksoy Oner E (2013) Microbial production of extracellular polysaccharides from biomass. In: Fanf Z (ed) Pretreatment techniques for biofuels and biorefineries. Springer, Berlin, Heidelberg, Germany, pp 35–56CrossRefGoogle Scholar
  46. Tokunaga M, Mizukami M, Yamasaki K, Tokunaga H, Onishi H, Hanagata H, Ishibasi M, Miyauchi A, Tsumoto K, Arakawa T (2013) Secretory production of single-chain antibody (scFv) in Brevibacillus choshinensis using novel fusion partner. Appl Microbiol Biotechnol 97:8569–8580. doi:10.1007/s00253-013-4695-2 CrossRefPubMedGoogle Scholar
  47. Wang X, Jin D, Zhou L, Wu L, An W, Chen Y, Zhao L (2014) Draft genome sequence of Brevibacillus panacihumi strain W25, a halotolerant hydrocarbon-degrading bacterium. Genome Announc 2:e01215–01213. doi:10.1128/genomeA. 01215-13 PubMedCentralPubMedGoogle Scholar
  48. Westman EL, Yan M, Waglechner N, Koteva K, Wright GD (2013) Self resistance to the atypical cationic antimicrobial peptide edeine of Brevibacillus brevis Vm4 by the N-acetyltransferase EdeQ. Chem Biol 20:983–990. doi:10.1016/j.chembiol.2013.06.010 CrossRefPubMedGoogle Scholar
  49. Yasar Yildiz S, Kambourova M, Arga KY, Toksoy Oner E (2013) Draft genome sequence of exopolysaccharide-producing thermophilic bacterium Brevibacillus thermoruber strain 423. Genome Announc 1:e00774–00713. doi:10.1128/genomeA. 00774-13 CrossRefPubMedCentralPubMedGoogle Scholar
  50. Yasar Yildiz S, Anzelmo G, Ozer T, Radchenkova N, Genc S, Di Donato P, Nicolaus B, Toksoy Oner E, Kambourova M (2014) Brevibacillus thermoruber: a promising microbial cell factory for exopolysaccharide production. J Appl Microbiol 116:314–324. doi:10.1111/jam.12362 CrossRefGoogle Scholar
  51. Yashiro K, Lowenthal JW, O'Neil TE, Ebisu S, Takagi H, Moore RJ (2001) High-level production of recombinant chicken interferon-γ by Brevibacillus choshinensis. Protein Express Purif 23:113–120. doi:10.1006/prep.2001.1481 CrossRefGoogle Scholar
  52. Ye J, Yin H, Peng H, Bai J, Xie D, Wang L (2013) Biosorption and biodegradation of triphenyltin by Brevibacillus brevis. Bioresour Technol 129:236–241. doi:10.1016/j.biortech.2012.11.076 CrossRefPubMedGoogle Scholar
  53. Yuki Y, Hara‐Yakoyama C, Guadiz AA, Udaka S, Kiyono H, Chatterjee S (2005) Production of a recombinant cholera toxin B subunit‐insulin B chain peptide hybrid protein by Brevibacillus choshinensis expression system as a nasal vaccine against autoimmune diabetes. Biotechnol Bioeng 92:803–809. doi:10.1002/bit.20654 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Songul Yasar Yildiz
    • 1
  • Nadja Radchenkova
    • 2
  • Kazim Yalcin Arga
    • 1
  • Margarita Kambourova
    • 2
  • Ebru Toksoy Oner
    • 1
  1. 1.IBSB, Department of BioengineeringMarmara UniversityIstanbulTurkey
  2. 2.Department of Extremophilic Bacteria, Institute of MicrobiologyBASSofiaBulgaria

Personalised recommendations