Applied Microbiology and Biotechnology

, Volume 99, Issue 4, pp 1845–1857 | Cite as

Elucidating butanol tolerance mediated by a response regulator Sll0039 in Synechocystis sp. PCC 6803 using a metabolomic approach

  • Xiangfeng Niu
  • Ye Zhu
  • Guangsheng Pei
  • Lina Wu
  • Lei ChenEmail author
  • Weiwen ZhangEmail author
Genomics, transcriptomics, proteomics


Butanol is highly toxic to cyanobacterial cells, which could restrict the future application of this renewable system in producing carbon neutral biofuel butanol. To seek knowledge regarding butanol tolerance in cyanobacteria, a library of response regulator (RR) gene mutants of Synechocystis sp. PCC 6803 was screened. The results showed that the deletion mutant of an orphan RR-encoding genes ll0039 was more sensitive to butanol than the wild type, while complementation of the ∆slr1037 mutant with the sll0039 gene recovered its tolerance to the same level as the wild type, suggesting that the sll0039 gene was involved in the regulation of tolerance against butanol. Further analysis employing an integrated liquid chromatography-mass spectrometry (LC-MS)-based and gas chromatography-mass spectrometry (GC-MS)-based metabolomics was conducted to determine the possible regulatory network of butanol tolerance mediated by Sll0039. LC-MS analysis allowed the identification of several metabolites, such as adenosine 5′-diphosphate (ADP)-glucose, dihydroxyacetone phosphate (DHAP), d-ribose 5-phosphate (R5P), d-glucose 6-phosphate (G6P), d-fructose 6-phosphate (F6P), α-ketoglutaric acid (AKG), uridine 5′-diphospho (UDP)-glucose, and nicotinamide adenine dinucleotide phosphate (NADP), which were differentially regulated between the wild type and the ∆sll0039 mutant grown under butanol stress, while GC-MS analysis identified 1, 2, and 2 metabolic modules associated with the sll0039 gene deletion at 24, 48, and 72 h, respectively, suggesting that they were under control directly or indirectly by Sll0039 RR. In addition, a metabolomic comparison of the metabolic responses to butanol stress was conducted in the ∆sll0039 mutant and the ∆slr1037 mutant previously found to be involved in butanol tolerance (Chen et al. Biotechnol Biofuels 7:89 2014a), and the results showed that the regulatory networks mediated by Sll0039 and Slr1037 could be functionally independent in Synechocystis. The results provided a metabolomic description of the butanol tolerance network regulated by Sll0039.


Butanol Tolerance Regulators Metabolomics Synechocystis 



The research was supported by grants from the National Basic Research Program of China (“973” program, project no. 2011CBA00803, no. 2014CB745101, and no. 2012CB721101), the National High-tech R&D Program (“863” program, project no. 2012AA02A707), and the National Science Foundation of China (NSFC, project no. 31470217).

Supplementary material

253_2015_6374_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1679 kb)


  1. Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9(3):258–267PubMedCrossRefGoogle Scholar
  2. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568PubMedCrossRefGoogle Scholar
  3. Alsaker KV, Spitzer TR, Papoutsakis ET (2004) Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell’s response to butanol stress. J Bacteriol 186(7):1959–1971PubMedCentralPubMedCrossRefGoogle Scholar
  4. Anfelt J, Hallstrom B, Nielsen J, Uhlen M, Hudson EP (2013) Using transcriptomics to improve butanol tolerance. Appl Environ Microbiol 79:7419–7427PubMedCentralPubMedCrossRefGoogle Scholar
  5. Ashby MK, Houmard J (2006) Cyanobacterial two-component proteins: structure, diversity, distribution, and evolution. Microbiol Mol Biol Rev MMBR 70(2):472–509CrossRefGoogle Scholar
  6. Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233PubMedCrossRefGoogle Scholar
  7. Bennette NB, Eng JF, Dismukes GC (2011) An LC-MS-based chemical and analytical method for targeted metabolite quantification in the model cyanobacterium Synechococcus sp. PCC 7002. Anal Chem 83(10):3808–3816PubMedCrossRefGoogle Scholar
  8. Brynildsen MP, Liao JC (2009) An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol Syst Biol 5:277PubMedCentralPubMedCrossRefGoogle Scholar
  9. Camsund D, Lindblad P (2014) Engineered transcriptional systems for cyanobacterial biotechnology. Front Bioeng Biotechnol 2:40PubMedCentralPubMedCrossRefGoogle Scholar
  10. Chen L, Wu L, Wang J, Zhang W (2014a) Butanol tolerance regulated by a two-component response regulator Slr1037 in photosynthetic Synechocystis sp. PCC 6803. Biotechnol Biofuels 7:89PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chen L, Zhu Y, Song Z, Wang J, Zhang W (2014b) An orphan response regulator Sll0649 involved in cadmium tolerance and metal homeostasis in photosynthetic Synechocystis sp. PCC 6803. J Proteomics 103:87–102PubMedCrossRefGoogle Scholar
  12. DiLeo MV, Strahan GD, den Bakker M, Hoekenga OA (2011) Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome. PLoS One 6(10):e26683PubMedCentralPubMedCrossRefGoogle Scholar
  13. Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32PubMedCentralPubMedCrossRefGoogle Scholar
  14. Durre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2(12):1525–1534PubMedCrossRefGoogle Scholar
  15. Durre P (2008) Fermentative butanol production: bulk chemical and biofuel. Ann N Y Acad Sci 1125:353–362PubMedCrossRefGoogle Scholar
  16. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171PubMedCrossRefGoogle Scholar
  17. Green EM (2011) Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol 22(3):337–343PubMedCrossRefGoogle Scholar
  18. Grundel M, Scheunemann R, Lockau W, Zilliges Y (2012) Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158(Pt 12):3032–3043PubMedCrossRefGoogle Scholar
  19. Hemamalini R, Khare S (2014) A proteomic approach to understand the role of the outer membrane porins in the organic solvent-tolerance of Pseudomonas aeruginosa PseA. PLoS One 9(8):e103788PubMedCentralPubMedCrossRefGoogle Scholar
  20. Hoch JA (2000) Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3(2):165–170PubMedCrossRefGoogle Scholar
  21. Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38(8):2577–2593PubMedCentralPubMedCrossRefGoogle Scholar
  22. Jin H, Chen L, Wang J, Zhang W (2014) Engineering biofuel tolerance in non-native producing microorganisms. Biotechnol Adv 32(2):541–548PubMedCrossRefGoogle Scholar
  23. Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, Steinhauser D, Selbig J, Willmitzer L (2010) Metabolomic and transcriptomic stress response of Escherichia coli. Mol Syst Biol 6:364PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kaczmarzyk D, Anfelt J, Sarnegrim A, Hudson EP (2014) Overexpression of sigma factor SigB improves temperature and butanol tolerance of Synechocystis sp. PCC6803. J Biotechnol 182–183:54–60PubMedCrossRefGoogle Scholar
  25. Kim WY, Kang S, Kim BC, Oh J, Cho S, Bhak J, Choi JS (2008) SynechoNET: integrated protein-protein interaction database of a model cyanobacterium Synechocystis sp. PCC 6803. BMC Bioinformatics 9(Suppl 1):S20PubMedCentralPubMedCrossRefGoogle Scholar
  26. Klahn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13(3):551–562PubMedCrossRefGoogle Scholar
  27. Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13(4):353–363PubMedCrossRefGoogle Scholar
  28. Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci U S A 109(16):6018–6023PubMedCentralPubMedCrossRefGoogle Scholar
  29. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559PubMedCentralPubMedCrossRefGoogle Scholar
  30. Ledauphin J, Le Milbeau C, Barillier D, Hennequin D (2010) Differences in the volatile compositions of French labeled brandies (Armagnac, Calvados, Cognac, and Mirabelle) using GC-MS and PLS-DA. J Agric Food Chem 58(13):7782–7793PubMedCrossRefGoogle Scholar
  31. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101(2):209–228PubMedCrossRefGoogle Scholar
  32. Liu J, Chen L, Wang J, Qiao J, Zhang W (2012) Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803. Biotechnol Biofuels 5(1):68PubMedCentralPubMedCrossRefGoogle Scholar
  33. Liu ZX, Li HC, Wei YP, Chu WY, Chong YL, Long XH, Liu ZP, Qin S, Shao HB (2013) Signal transduction pathways in Synechocystis sp. PCC 6803 and biotechnological implications under abiotic stress. Crit Rev Biotechnol. doi: 10.3109/07388551.2013.838662
  34. Liu D, Chen Y, Ding FY, Zhao T, Wu JL, Guo T, Ren HF, Li BB, Niu HQ, Cao Z, Lin XQ, Xie JJ, He XJ, Ying HJ (2014) Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption. Biotechnol Biofuels 7(1):5PubMedCentralPubMedCrossRefGoogle Scholar
  35. Los DA, Zorina A, Sinetova M, Kryazhov S, Mironov K, Zinchenko VV (2010) Stress sensors and signal transducers in cyanobacteria. Sensors 10(3):2386–2415PubMedCentralPubMedCrossRefGoogle Scholar
  36. Ma R, Zhang Y, Hong H, Lu W, Lin M, Chen M, Zhang W (2011) Improved osmotic tolerance and ethanol production of ethanologenic Escherichia coli by IrrE, a global regulator of radiation-resistance of Deinococcus radiodurans. Curr Microbiol 62(2):659–664PubMedCrossRefGoogle Scholar
  37. Maeda K, Narikawa R, Ikeuchi M (2014) CugP is a novel ubiquitous non-GalU-type bacterial UDP-glucose pyrophosphorylase found in cyanobacteria. J Bacteriol 196(13):2348–2354PubMedCentralPubMedCrossRefGoogle Scholar
  38. Miranda H, Cheregi O, Netotea S, Hvidsten TR, Moritz T, Funk C (2013) Co-expression analysis, proteomic and metabolomic study on the impact of a Deg/HtrA protease triple mutant in Synechocystis sp. PCC 6803 exposed to temperature and high light stress. J Proteomics 78:294–311PubMedCrossRefGoogle Scholar
  39. Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12(4):307–331PubMedCrossRefGoogle Scholar
  40. Pal D, Khozin-Goldberg I, Didi-Cohen S, Solovchenko A, Batushansky A, Kaye Y, Sikron N, Samani T, Fait A, Boussiba S (2013) Growth, lipid production and metabolic adjustments in the euryhaline eustigmatophyte Nannochloropsis oceanica CCALA 804 in response to osmotic downshift. Appl Microbiol Biotechnol 97(18):8291–8306Google Scholar
  41. Pollak N, Dolle C, Ziegler M (2007) The power to reduce: pyridine nucleotides—small molecules with a multitude of functions. Biochem J J402(2):205–218Google Scholar
  42. Qiao J, Wang J, Chen L, Tian X, Huang S, Ren X, Zhang W (2012) Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803. J Proteome Res 11(11):5286–5300PubMedCrossRefGoogle Scholar
  43. Ren Q, Shi M, Chen L, Wang J, Zhang W (2014) Integrated proteomic and metabolomic characterization of a novel two-component response regulator Slr 1909 involved in acid tolerance in Synechocystis sp. PCC 6803. J Proteomics 109C:76–89CrossRefGoogle Scholar
  44. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13(1):11–29Google Scholar
  45. Rutherford BJ, Dahl RH, Price RE, Szmidt HL, Benke PI, Mukhopadhyay A, Keasling JD (2010) Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol 76(6):1935–1945PubMedCentralPubMedCrossRefGoogle Scholar
  46. Schiel-Bengelsdorf B, Montoya J, Linder S, Durre P (2013) Butanol fermentation. Environ Technol 34(13–16):1691–1710PubMedCrossRefGoogle Scholar
  47. Schwarz D, Orf I, Kopka J, Hagemann M (2013) Recent applications of metabolomics toward cyanobacteria. Metabolites 3(1):72–100PubMedCentralPubMedCrossRefGoogle Scholar
  48. Strøm AR, Kaasen I (1993) Trehalose metabolism in Escherichia coli stress protection and stress regulation of gene expression. Mol Microbiol 8(2):205–210PubMedCrossRefGoogle Scholar
  49. Su Y, Wang J, Shi M, Niu X, Yu X, Gao L, Zhang X, Chen L, Zhang W (2014) Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions. Bioresour Technol 170:522–529PubMedCrossRefGoogle Scholar
  50. Swan TM, Watson K (1999) Stress tolerance in a yeast lipid mutant: membrane lipids influence tolerance to heat and ethanol independently of heat shock proteins and trehalose. Can J Microbiol 45(6):472–479PubMedCrossRefGoogle Scholar
  51. Tian X, Chen L, Wang J, Qiao J, Zhang W (2013) Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. J Proteomics 78:326–345PubMedCrossRefGoogle Scholar
  52. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69(8):4951–4965PubMedCentralPubMedCrossRefGoogle Scholar
  53. Van Dijck P, Colavizza D, Smet P, Thevelein JM (1995) Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 61(1):109–115PubMedCentralPubMedGoogle Scholar
  54. Wang HL, Postier BL, Burnap RL (2002) Optimization of fusion PCR for in vitro construction of gene knockout fragments. BioTechniques 33(1):26–32PubMedGoogle Scholar
  55. Wang J, Chen L, Tian X, Gao L, Niu X, Shi M, Zhang W (2013) Global metabolomic and network analysis of Escherichia coli responses to exogenous biofuels. J Proteome Res 12(11):5302–5312PubMedCrossRefGoogle Scholar
  56. Wang J, Zhang X, Shi M, Gao L, Niu X, Te R, Chen L, Zhang W (2014a) Metabolomic analysis of the salt-sensitive mutants reveals changes in amino acid and fatty acid composition important to long-term salt stress in Synechocystis sp. PCC 6803. Funct Integr Genom 14(2):431–440CrossRefGoogle Scholar
  57. Wang Y, Shi M, Niu X, Zhang X, Gao L, Chen L, Wang J, Zhang W (2014b) Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803. Microb Cell Factories 13(1):151CrossRefGoogle Scholar
  58. Yoshihara S, Suzuki F, Fujita H, Geng XX, Ikeuchi M (2000) Novel putative photoreceptor and regulatory genes required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 41(12):1299–1304PubMedCrossRefGoogle Scholar
  59. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17Google Scholar
  60. Zhu H, Ren X, Wang J, Song Z, Shi M, Qiao J, Tian X, Liu J, Chen L, Zhang W (2013) Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803. Biotechnol Biofuels 6(1):106PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Laboratory of Synthetic Microbiology, School of Chemical Engineering & TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin UniversityTianjinPeople’s Republic of China
  3. 3.SynBio Research PlatformCollaborative Innovation Center of Chemical Science and EngineeringTianjinPeople’s Republic of China

Personalised recommendations