Applied Microbiology and Biotechnology

, Volume 99, Issue 8, pp 3491–3503 | Cite as

Targeted expression of nuclear transgenes in Chlamydomonas reinhardtii with a versatile, modular vector toolkit

  • Kyle J. Lauersen
  • Olaf Kruse
  • Jan H. MussgnugEmail author
Applied genetics and molecular biotechnology


We present a versatile vector toolkit for nuclear transgene expression in the model green microalga Chlamydomonas reinhardtii. The vector was designed in a modular fashion which allows quick replacement of regulatory elements and genes of interest. The current toolkit comprises two antibiotic resistance markers (paromomycin and hygromycin B), five codon-optimized light emission reporters, including the Gaussia princeps luciferase, as well as bright cyan, green, yellow, and red fluorescent protein variants. The system has demonstrated robust functional flexibility with signal options to target the protein of interest to the cytoplasm, the nucleus, cellular microbodies, the chloroplast, mitochondria, or via the endoplasmic reticulum-Golgi apparatus secretory pathway into the culture medium. Successful fluorescent reporter protein fusion to C. reinhardtii Rubisco small subunit 1 was accomplished with this system. Localization of the fluorescently tagged protein was observed in the chloroplast pyrenoid via live cell fluorescence microscopy, the first report of heterologous protein localization to this cellular structure. The functionalities of the vector toolkit, the individual modular elements, as well as several combinations thereof are demonstrated in this manuscript. Due to its strategic design, this vector system can quickly be adapted to individual tasks and should therefore be of great use to address specific scientific questions requiring nuclear recombinant protein expression in C. reinhardtii.


Microalga Chlamydomonas reinhardtii Recombinant proteins Fluorescent proteins Luciferase Protein secretion 



The authors would like to acknowledge the CLIB Graduate Cluster Industrial Biotechnology (Federal Ministry of Science & Technology North Rhine Westphalia, Germany (to K.J.L.)) for financial support. The authors would also like to express thanks to Dr. Martina Lummer, Prof. Dr. Thorsten Seidel, Prof. Dr. Karsten Niehaus, Dr. Darius Widera for assistance with fluorescence protein analysis and microscopy, to Prof. Dr. Ralph Bock for strain UVM4, as well as to Jan Schwarzhans and Prof. Dr. Karl Friehs for providing the GFP standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2014_6354_MOESM1_ESM.pdf (22.2 mb)
ESM 1 (PDF 22755 kb)
253_2014_6354_MOESM2_ESM.mpg (2.4 mb)
ESM 2 (MPG 2416 kb)


  1. Apt KE, Kroth-Pancic PG, Grossman AR (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252(5):572–579PubMedGoogle Scholar
  2. Bateman JM, Purton S (2000) Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Mol Genet Genomics 263:404–410CrossRefGoogle Scholar
  3. Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7′ gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153(4):401–412CrossRefPubMedGoogle Scholar
  4. Bogen C, Klassen V, Wichmann J, La Russa M, Doebbe A, Grundmann M, Uronen P, Kruse O, Mussgnug JH (2013) Identification of Monoraphidium contortum as a promising species for liquid biofuel production. Bioresour Technol 133:622–626CrossRefPubMedGoogle Scholar
  5. Chen H-C, Melis A (2013) Marker-free genetic engineering of the chloroplast in the green microalga Chlamydomonas reinhardtii. Plant Biotechnol J 11(7):818–828CrossRefPubMedGoogle Scholar
  6. Cordero BF, Couso I, León R, Rodríguez H, Vargas MA (2011) Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Appl Microbiol Biotechnol 91:341–351CrossRefPubMedCentralPubMedGoogle Scholar
  7. Draaisma RB, Wijffels RH, Slegers PME, Brentner LB, Roy A, Barbosa MJ (2013) Food commodities from microalgae. Curr Opin Biotechnol 24(2):169–177CrossRefPubMedGoogle Scholar
  8. Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229(4):873–883CrossRefPubMedGoogle Scholar
  9. Feng S, Feng W, Zhao L, Gu H, Li Q, Shi K, Guo S, Zhang N (2014a) Preparation of transgenic Dunaliella salina for immunization against white spot syndrome virus in crayfish. Arch Virol 159(3):519–525CrossRefPubMedGoogle Scholar
  10. Feng S, Li X, Xu Z, Qi J (2014b) Dunaliella salina as a novel host for the production of recombinant proteins. Appl Microbiol Biotechnol 98(10):4293–4300CrossRefPubMedGoogle Scholar
  11. Fischer N, Rochaix J-D (2001) The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 265(5):888–894CrossRefPubMedGoogle Scholar
  12. Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 19(3):353–361CrossRefPubMedGoogle Scholar
  13. Fuhrmann M, Hausherr A, Ferbitz L, Schödl T, Heitzer M, Hegemann P (2004) Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol Biol 55(6):869–881CrossRefPubMedGoogle Scholar
  14. Genkov T, Meyer M, Griffiths H, Spreitzer RJ (2010) Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in Chlamydomonas. J Biol Chem 285(26):19833–19841CrossRefPubMedCentralPubMedGoogle Scholar
  15. Glanz S, Bunse A, Wimbert A, Balczun C, Kück U (2006) A nucleosome assembly protein-like polypeptide binds to chloroplast group II intron RNA in Chlamydomonas reinhardtii. Nucleic Acids Res 34(18):5337–5351CrossRefPubMedCentralPubMedGoogle Scholar
  16. Glanz S, Jacobs J, Kock V, Mishra A, Kück U (2012) Raa4 is a trans-splicing factor that specifically binds chloroplast tscA intron RNA. Plant J 69(3):421–431CrossRefPubMedGoogle Scholar
  17. Goldschmidt-Clermont M, Rahire M (1986) Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. J Mol Biol 191(3):421–432CrossRefPubMedGoogle Scholar
  18. Hallmann A (2007) Algal transgenics and biotechnology. Transgenic Plant J 1(1):81–98Google Scholar
  19. Hayashi Y, Shinozaki A (2012) Visualization of microbodies in Chlamydomonas reinhardtii. J Plant Res 125(4):579–586CrossRefPubMedGoogle Scholar
  20. Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39(2):499–509CrossRefPubMedGoogle Scholar
  21. Kilian O, Benemann CSE, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A 108:21265–21269CrossRefPubMedCentralPubMedGoogle Scholar
  22. Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87(3):1228–1232CrossRefPubMedCentralPubMedGoogle Scholar
  23. Kindle KL, Schnell RA, Fernández E, Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109(6):2589–2601CrossRefPubMedGoogle Scholar
  24. Kremers G-J, Goedhart J, van Munster EB, Gadella TWJ (2006) Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius. Biochemistry 45(21):6570–6580CrossRefPubMedGoogle Scholar
  25. Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, Davidson MW, Schnitzer MJ, Tsien RY, Lin MZ (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9(10):1005–1012CrossRefPubMedCentralPubMedGoogle Scholar
  26. Lauersen KJ, Berger H, Mussgnug JH, Kruse O (2013a) Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. J Biotechnol 167(2):101–110CrossRefPubMedGoogle Scholar
  27. Lauersen KJ, Vanderveer TL, Berger H, Kaluza I, Mussgnug JH, Walker VK, Kruse O (2013b) Ice recrystallization inhibition mediated by a nuclear-expressed and -secreted recombinant ice-binding protein in the microalga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 97(22):9763–9772CrossRefPubMedGoogle Scholar
  28. León-Bañares R, González-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22(1):45–52CrossRefPubMedGoogle Scholar
  29. Liu B, Vieler A, Li C, Jones AD, Benning C (2013) Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica. Bioresour Technol 146:310–316CrossRefPubMedGoogle Scholar
  30. Lumbreras V, Stevens RD, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14(4):441–447CrossRefGoogle Scholar
  31. Markwardt ML, Kremers G-J, Kraft CA, Ray K, Cranfill PJC, Wilson KA, Day RN, Wachter RM, Davidson MW, Rizzo MA (2011) An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching. PLoS One 6(3):e17896CrossRefPubMedCentralPubMedGoogle Scholar
  32. Miyahara M, Aoi M, Inoue-Kashino N, Kashino Y, Ifuku K (2014) Highly efficient transformation of the diatom Phaeodactylum tricornutum by multi-pulse electroporation. Biosci Biotechnol Biochem 77(4):874–876CrossRefGoogle Scholar
  33. Neupert J, Karcher D, Bock R (2009) Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57(6):1140–1150CrossRefPubMedGoogle Scholar
  34. Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 3:686CrossRefPubMedCentralPubMedGoogle Scholar
  35. Rasala BA, Mayfield SP (2014) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res. doi: 10.1007/s11120-014-9994-7 PubMedGoogle Scholar
  36. Rasala BA, Barrera DJ, Ng J, Plucinak TM, Rosenberg JN, Weeks DP, Oyler GA, Peterson TC, Haerizadeh F, Mayfield SP (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8(6):719–733CrossRefPubMedCentralPubMedGoogle Scholar
  37. Rasala BA, Muto M, Sullivan J, Mayfield SP (2011) Improved heterologous protein expression in the chloroplast of Chlamydomonas reinhardtii through promoter and 5′ untranslated region optimization. Plant Biotechnol J 9(6):674–683CrossRefPubMedGoogle Scholar
  38. Rasala BA, Lee PA, Shen Z, Briggs SP, Mendez M, Mayfield SP (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 7(8):e43349CrossRefPubMedCentralPubMedGoogle Scholar
  39. Rasala BA, Barrera DJ, Ng J, Plucinak TM, Rosenberg JN, Weeks DP, Oyler GA, Peterson TC, Haerizadeh F, Mayfield SP (2013) Expanding the spectral palette of fluorescent proteins for the green microalga Chlamydomonas reinhardtii. Plant J 74(4):545–556CrossRefPubMedGoogle Scholar
  40. Rasala BA, Chao S-S, Pier M, Barrera DJ, Mayfield SP (2014) Enhanced genetic tools for engineering multigene traits into green algae. PLoS One 9(4):e94028CrossRefPubMedCentralPubMedGoogle Scholar
  41. Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N (2006) High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci U S A 103(12):4771–4776CrossRefPubMedCentralPubMedGoogle Scholar
  42. Rochaix JD (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29:209–230CrossRefPubMedGoogle Scholar
  43. Ruecker O, Zillner K, Groebner-Ferreira R, Heitzer M (2008) Gaussia-luciferase as a sensitive reporter gene for monitoring promoter activity in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 280(2):153–162CrossRefPubMedGoogle Scholar
  44. Schroda M, Blöcker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21(2):121–131CrossRefPubMedGoogle Scholar
  45. Schwarz C, Elles I, Kortmann J, Piotrowski M, Nickelsen J (2007) Synthesis of the D2 protein of photosystem II in Chlamydomonas is controlled by a high molecular mass complex containing the RNA stabilization factor Nac2 and the translational activator RBP40. Plant Cell 19(11):3627–3639CrossRefPubMedCentralPubMedGoogle Scholar
  46. Shao N, Bock R (2008) A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii. Curr Genet 53(6):381–388CrossRefPubMedCentralPubMedGoogle Scholar
  47. Sizova IA, Lapina TV, Frolova ON, Alexandrova NN, Akopiants KE, Danilenko VN (1996) Stable nuclear transformation of Chlamydomonas reinhardtii with a Streptomyces rimosus gene as the selective marker. Gene 181(1–2):13–18CrossRefPubMedGoogle Scholar
  48. Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277(1–2):221–229CrossRefPubMedGoogle Scholar
  49. Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15(10):554–564CrossRefPubMedGoogle Scholar
  50. Verhaegen M, Christopoulos TK (2002) Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal Chem 74(17):4378–4385CrossRefGoogle Scholar
  51. Vieler A, Wu G, Tsai C-H, Bullard B, Cornish AJ, Harvey C, Reca I-B, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Armenia Ferguson A, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya SJP, Terbush A, Warakanont J, Zäuner S, Farre EM, Hegg EL, Jiang N, Kuo M-H, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu S-H, Benning C (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8(11):e1003064CrossRefPubMedCentralPubMedGoogle Scholar
  52. Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24(3):405–413CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kyle J. Lauersen
    • 1
  • Olaf Kruse
    • 1
  • Jan H. Mussgnug
    • 1
    Email author
  1. 1.Faculty of Biology, Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany

Personalised recommendations