Applied Microbiology and Biotechnology

, Volume 99, Issue 11, pp 4807–4814 | Cite as

Effectiveness and toxicity of a novel isolated actinomycete strain Streptomyces sp. JS01 on a harmful alga Phaeocystis globosa

  • Huajun Zhang
  • Su Zhang
  • Yun Peng
  • Yi Li
  • Guanjing Cai
  • Zhangran Chen
  • Wei Zheng
  • Yun Tian
  • Hong Xu
  • Tianling Zheng
Applied microbial and cell physiology

Abstract

An aquatic actinomycete capable of eliminating the brown tide causing marine alga Phaeocystis globosa was isolated from the surface sea water and the isolate named JS01 was characterized as Streptomyces on the basis of its 16S rRNA gene sequence. The supernatant of JS01 could lyse algal cells, implying that JS01 produced a latent alga-lytic compound. Considering this algicidal activity and the response of the algal cells, Chlorophyll a fluorescence decreased significantly in P. globosa in response to the JS01 supernatant when analyzed with flow cytometry. The algal cells experienced cell shrinkage and plasmolysis before disintegration after 72 h of treatment. The released algicide(s) were heat-tolerant, except above 121 °C, and fluctuation in pH variations; even so, algicidal activity was also over 60 %. The maximum toxicity of JS01 was on the seventh day of culture, and the relative luminosity was 0.49 at that time when detected by luminous bacteria Vibrio fischeri. These results indicated that the Streptomyces sp. JS01 could function as a potential controller of Phaeocystis globosa blooms.

Keywords

Phaeocystis globosa Algicidal activity Streptomyces Harmful alga blooms Toxicity 

References

  1. Anderson DM (1997) Turning back the harmful red tide. Nature 388(6642):513–514CrossRefGoogle Scholar
  2. Baudoux AC, Brussaard CP (2005) Characterization of different viruses infecting the marine harmful algal bloom species Phaeocystis globosa. Virology 341(1):80–90CrossRefPubMedGoogle Scholar
  3. Choi H, Kim B, Kim J, Han M (2005) Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biol Control 33(3):335–343CrossRefGoogle Scholar
  4. Dakhama A, Noüe J, Lavoie M (1993) Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa. J Appl Phycol 5(3):297–306CrossRefGoogle Scholar
  5. DiTullio G, Grebmeier J, Arrigo K, Lizotte M, Robinson D, Leventer A, Barry J, VanWoert M, Dunbar R (2000) Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature 404(6778):595–598CrossRefPubMedGoogle Scholar
  6. Faber MJ, Smith LM, Boermans HJ, Stephenson GR, Thompson DG, Solomon KR (1997) Cryopreservation of fluorescent marker-labeled algae (Selenastrum capricornutum) for toxicity testing using flow cytometry. Environ Toxicol Chem 16(5):1059–1067CrossRefGoogle Scholar
  7. Fukuyo Y, Imai I, Kodama M, Tamai K (2002) Red tides and other harmful algal blooms in Japan. Harmful algal blooms in the PICES region of the North Pacific (Taylor FJRM, Trainer VL, eds) PICES. Sci Rep-UK (23):7-20Google Scholar
  8. Green DH, Llewellyn LE, Negri AP, Blackburn SI, Bolch CJ (2004) Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol 47(3):345–357CrossRefPubMedGoogle Scholar
  9. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. Culture of marine invertebrate animals. Plenum 29-60Google Scholar
  10. Hare CE, Demir E, Coyne KJ, Craig Cary S, Kirchman DL, Hutchins DA (2005) A bacterium that inhibits the growth of Pfiesteria piscicida and other dinoflagellates. Harmful Algae 4(2):221–234CrossRefGoogle Scholar
  11. Hoogstraten A, Peters M, Timmermans KR, de Baar HJW (2012) Combined effects of inorganic carbon and light on Phaeocystis globosa Scherffel (Prymnesiophyceae). Biogeosciences 9(5):1885–1896Google Scholar
  12. Imamura N, Motoike I, Shimada N, Nishikori M, Morisaki H, Fukami H (2001) An efficient screening approach for anti-Microcystis compounds based on knowledge of aquatic microbial ecosystem. J Antibiot 54(7):582–588CrossRefPubMedGoogle Scholar
  13. Kim YS, Lee D-S, Jeong S-Y, Lee WJ, Lee M-S (2009) Isolation and characterization of a marine algicidal bacterium against the harmful Raphidophyceae Chattonella marina. J Microbiol 47(1):9–18Google Scholar
  14. Lamy D, Obernosterer I, Laghdass M, Artigas F, Breton E, Grattepanche JD, Lecuyer E, Degros N, Lebaron P, Christaki U (2009) Temporal changes of major bacterial groups and bacterial heterotrophic activity during a Phaeocystis globosa bloom in the eastern English Channel. Aquat Microb Ecol 58:95–107CrossRefGoogle Scholar
  15. Liu W, Chen S, Quan X, Jin YH (2008) Toxic effect of serial perfluorosulfonic and perfluorocarboxylic acids on the membrane system of a freshwater alga measured by flow cytometry. Environ Toxicol Chem 27(7):1597–1604CrossRefPubMedGoogle Scholar
  16. Mayali X, Azam F (2004) Algicidal bacteria in the sea and their impact on algal blooms. J Eukaryot Microbiol 51(2):139–144CrossRefPubMedGoogle Scholar
  17. Mayali X, Doucette GJ (2002) Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae 1(3):277–293Google Scholar
  18. Mu R, Fan Z, PeI H, Yuan X, Liu S, Wang X (2007) Isolation and algae-lysing characteristics of the algicidal bacterium B5. J Environ Sci (China) 19(11):1336–1340CrossRefGoogle Scholar
  19. Nakashima T, Miyazaki Y, Matsuyama Y, Muraoka W, Yamaguchi K, Oda T (2006) Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacterium γ-proteobacterium. Appl Microbiol Biotechnol 73(3):684–690Google Scholar
  20. Parvez S, Venkataraman C, Mukherji S (2006) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ Int 32(2):265–268CrossRefPubMedGoogle Scholar
  21. Pierce RH, Henry MS, Higham CJ, Blum P, Sengco MR, Anderson DM (2004) Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation. Harmful Algae 3(2):141–148CrossRefGoogle Scholar
  22. Ruimin M (2011) Inhibition of Microcystis aeruginosa and microcystin-LR with one algicidal bacterium isolated from a eutrophic lake. Afr J Biotechnol 11(2):460–465CrossRefGoogle Scholar
  23. Santini S, Jeudy S, Bartoli J, Poirot O, Lescot M, Abergel C, Barbe V, Wommack KE, Noordeloos AA, Brussaard CP, Claverie JM (2013) Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc Natl Acad Sci U S A 110(26):10800–10804CrossRefPubMedCentralPubMedGoogle Scholar
  24. Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53(1–2):43–66CrossRefGoogle Scholar
  25. Sengco MR, Anderson DM (2004) Controlling harmful algal blooms through clay flocculation1. J Eukaryot Microbiol 51(2):169–172CrossRefPubMedGoogle Scholar
  26. Spilimbergo S, Foladori P, Mantoan D, Ziglio G, Della Mea G (2010) High-pressure CO2 inactivation and induced damage on Saccharomyces cerevisiae evaluated by flow cytometry. Process Biochem 45(5):647–654CrossRefGoogle Scholar
  27. Su JQ, Yang XR, Zheng TL, Tian Y, Jiao NZ, Cai LZ, Hong HS (2007) Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae 6(6):799–810CrossRefGoogle Scholar
  28. Wang X, Gong L, Liang S, Han X, Zhu C, Li Y (2005) Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 4(2):433–443CrossRefGoogle Scholar
  29. Wang BX, Zhou YY, Bai SJ, Su JQ, Tian Y, Zheng TL, Yang XR (2010a) A novel marine bacterium algicidal to the toxic dinoflagellate Alexandrium tamarense. Lett Appl Microbiol 51(5):552–557CrossRefPubMedGoogle Scholar
  30. Wang L, Zheng H, Long Y, Gao M, Hao J, Du J, Mao X, Zhou D (2010b) Rapid determination of the toxicity of quantum dots with luminous bacteria. J Hazard Mater 177(1–3):1134–1137CrossRefPubMedGoogle Scholar
  31. Wang X, Li Z, Su J, Tian Y, Ning X, Hong H, Zheng T (2010c) Lysis of a red-tide causing alga, Alexandrium tamarense, caused by bacteria from its phycosphere. Biol Control 52(2):123–130CrossRefGoogle Scholar
  32. Wang BX, Yang X, Zhou Y, Lv J, Su J, Tian Y, Zhang J, Lin G, Zheng T (2012) An algicidal protein produced by bacterium isolated from the Donghai Sea, China. Harmful Algae 13:83–88CrossRefGoogle Scholar
  33. Yoshikawa K, Adachi K, Miyuki N, Tamaki S, Harada K, Mochida K, Sano H (2000) Beta-cyanoalanine production by marine bacteria on cyanide-free medium and its specific inhibitory activity toward cyanobacteria. Appl Environ Microb (AEM) 66(2):718CrossRefGoogle Scholar
  34. Yun-Ming Z, Hui C, Chen-Liu H, Qiang W (2013) Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS One 8(7):e69225CrossRefGoogle Scholar
  35. Zhang H, An X, Zhou Y, Zhang B, Zhang S, Li D, Chen Z, Li Y, Bai S, Lv J, Zheng W, Tian Y, Zheng T (2013) Effect of oxidative stress induced by Brevibacterium sp. BS01 on a HAB causing species—Alexandrium tamarense. PLoS One 8(5):e63018CrossRefPubMedCentralPubMedGoogle Scholar
  36. Zheng X, Zhang B, Zhang J, Huang L, Lin J, Li X, Zhou Y, Wang H, Yang X, Su J (2012) A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa. Appl Microbiol Biotechnol 97(20):9207–9215CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Huajun Zhang
    • 1
    • 2
  • Su Zhang
    • 1
  • Yun Peng
    • 1
  • Yi Li
    • 1
  • Guanjing Cai
    • 1
  • Zhangran Chen
    • 1
  • Wei Zheng
    • 1
    • 2
  • Yun Tian
    • 1
  • Hong Xu
    • 1
  • Tianling Zheng
    • 1
    • 2
  1. 1.State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life SciencesXiamen UniversityXiamenChina
  2. 2.ShenZhen Research InstituteXiamen UniversityShenZhenChina

Personalised recommendations