Applied Microbiology and Biotechnology

, Volume 99, Issue 4, pp 1587–1597 | Cite as

Applications of hydrophobins: current state and perspectives

  • Han A. B. WöstenEmail author
  • Karin ScholtmeijerEmail author


Hydrophobins are proteins exclusively produced by filamentous fungi. They self-assemble at hydrophilic-hydrophobic interfaces into an amphipathic film. This protein film renders hydrophobic surfaces of gas bubbles, liquids, or solid materials wettable, while hydrophilic surfaces can be turned hydrophobic. These properties, among others, make hydrophobins of interest for medical and technical applications. For instance, hydrophobins can be used to disperse hydrophobic materials; to stabilize foam in food products; and to immobilize enzymes, peptides, antibodies, cells, and anorganic molecules on surfaces. At the same time, they may be used to prevent binding of molecules. Furthermore, hydrophobins have therapeutic value as immunomodulators and can been used to produce recombinant proteins.


Hydrophobins Self-assembly Surface modification Applications 


  1. Armenante A, Longobardi S, Rea I, De Stefano L, Giocondo M, Silipo A, Molinaro A, Giardina P (2010) The Pleurotus ostreatus hydrophobin vmh2 and its interaction with glucans. Glycobiol 20:594–602Google Scholar
  2. Askolin S, Nakari-Setälä T, Tenkanen M (2001) Overproduction, purification and characterization of the Trichoderma reesei hydrophobin HFBI. Appl Microbiol Biotechnol 57:124–130PubMedGoogle Scholar
  3. Askolin S, Linder MB, Scholtmeijer K, Tenkanen M, Penttilä ME, de Vocht ML, Wösten HAB (2006) Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reseei. Biomacromolecules 7:1295–1301PubMedGoogle Scholar
  4. Bilewicz R, Witomski J, van der Heyden A, Tagu D, Palin B, Rogalska E (2001) Modification of electrodes with self-assembled hydrophobin layers. J Phys Chem B 105:9772–9777Google Scholar
  5. Bimbo LM, Mäkilä E, Raula J, Laaksonen T, Laaksonen P, Strommera K, Kauppinen EI, Salonen J, Linder MB, Hirvonen J, Santos HA (2011) Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. 32:9089-9099Google Scholar
  6. Blijdenstein TBJ, de Groot PWN, Stoyanov SD (2010) On the link between foam coarsening and surface rheology: why hydrophobins are so different. Soft Matter 6:1799–1808Google Scholar
  7. Boeuf S, Throm T, Gutt B, Strunk T, Hoffmann M, Seebach E, Mühlberg L, Brocher J, Gotterbarm T, Wenzel W, Fischer R, Richter W (2012) Engineering hydrophobin DewA to generate surfaces that enhance adhesion of human but not bacterial cells. Acta Biomat 8:1037–1047Google Scholar
  8. Butko P, Buford JP, Goodwin JS, Stroud PA, McCormick CL, Cannon GC (2001) Spectroscopic evidence for amyloid-like interfacial self-assembly of hydrophobin Sc3. Biochem Biophys Res Comm 280:212–215PubMedGoogle Scholar
  9. Corvis Y, Walcarius A, Rink R, Mrabet NT, Rogalska E (2005) Preparing catalytic surfaces for sensing applications by immobilizing enzymes via hydrophobin layers. Anal Chem 77:1622–1630PubMedGoogle Scholar
  10. Corvis Y, Trzcinska K, Rink R, Bilkova P, Gorecka E, Bilewicz R, Rogalska E (2007) Electron-donor-acceptor fullerene derivative retained on electrodes using SC3 hydrophobin. J Phys Chem 111:1176–1179Google Scholar
  11. Cox AR, Cagnol F, Russell AB, Izzard MJ (2007) Surface properties of class II hydrophobins from Trichoderma reesei and influence on bubble stability. Langmuir. doi: 10.1021/la700451g Google Scholar
  12. Cox AR, Aldred DL, Russell AB (2009) Exceptional stability of food foams using class II hydrophobin HFBII. Food Hydrocoll 23:366–376Google Scholar
  13. Danov KD, Kralchevskya PA, Radulova GM, Basheva ES, Stoyanov SD, Pelan EG (2014) Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements. Adv Coll Interf Sci. doi: 10.1016/j.cis.2014.04.00 Google Scholar
  14. De Vocht ML, Scholtmeijer K, van der Vegte EW, de Vries OMH, Sonveaux N, Wösten HAB, Ruysschaert JM, Hadziloannou G, Wessels JGH, Robillard GT (1998) Structural characterization of the hydrophobin SC3, as monomer and after self-assembly at hydrophobic/hydrophilic interfaces. Biophys J 74:2059–2068PubMedCentralPubMedGoogle Scholar
  15. De Vocht ML, Reviakine I, Wösten HAB, Brisson A, Wessels JGH, Robillard GT (2000) Structural and functional role of the disulphide bridges in the hydrophobin SC3. J Biol Chem 275:28428–28432Google Scholar
  16. De Vocht ML, Reviakine I, Ulrich WP, Bergsma-Schutter W, Wösten HAB, Vogel H, Brisson A, Wessels JGH, Robillard GT (2002) Self-assembly of the hydrophobin SC3 proceeds via two structural intermediates. Protein Sci 11:1199–1205PubMedCentralPubMedGoogle Scholar
  17. De Vries OMH, Fekkes MP, Wösten HAB, Wessels JGH (1993) Insoluble hydrophobin complexes in the walls of Schizophyllum commune and other filamentous fungi. Arch Microbiol 159:330–335Google Scholar
  18. Espino-Rammer L, Ribitsch D, Przylucka A, Marold A, Greimel KJ, Herrero Acero E, Guebitz GM, Kubicek CP, Druzhinina IS (2013) Two novel class II hydrophobins from Trichoderma spp. stimulate enzymatic hydrolysis of poly(ethylene terephthalate) when expressed as fusion proteins. AEM 79:4230–4238Google Scholar
  19. Fang G, Tang B, Liu Z, Gou J, Zhang Y, Xu H, Tang X (2014) Novel hydrophobin-coated docetaxel nanoparticles for intravenous delivery: in vitro characteristics and in vivo performance. Eur J Pharma Sci 60:1–9Google Scholar
  20. Haas Jimoh Akanbi M, Post E, Meter-Arkema AH, Rink R, Robillard GT, Wang X, Wösten HAB, Scholtmeijer K (2010) Use of hydrophobins in formulation of water insoluble drugs for oral administration. Colloids Surf B Biointerfaces 75:526–531PubMedGoogle Scholar
  21. Haas Jimoh Akanbi M, Post E, van Putten SM, de Vries L, Smisterova J, Meter-Arkema AH, Wösten HAB, Rink R, Scholtmeijer K (2013) The antitumor activity of hydrophobin SC3, a fungal protein. Appl Microbiol Biotechnol 97:4385–4392Google Scholar
  22. Hakanpää J, Paananen A, Askolin S, Nakari-Setälä T, Parkkinen T, Penttilä ME, Linder MB, Rouvinen J (2004) Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. J Biol Chem 279:534–539PubMedGoogle Scholar
  23. Hakanpää J, Szilvay GR, Kaljunen H, Maksimainen M, Linder MB, Rouvinen J (2006a) Two crystal structures of Trichoderma reesei hydrophobin HFBI-the structure of a protein amphiphile with and without detergent interaction. Protein Sci 15:2129–2140PubMedCentralPubMedGoogle Scholar
  24. Hakanpää J, Linder MB, Popov A, Schmidt A, Rouvinen J (2006b) Hydrophobin HFBII in detail: ultrahigh-resolution structure at 0.75 Å. Acta Crystallogr D Biol Crystallogr 62:356–367PubMedGoogle Scholar
  25. Heinonen H, Laaksonen P, Linder MB, Hentze H-P (2014) Engineered hydrophobin for biomimetic mineralization of functional calcium carbonate microparticles. J Biomat Nanobiotechnol 5:1–7Google Scholar
  26. Hektor HJ, Scholtmeijer K (2005) Hydrophobins: proteins with potential. Curr Opin Biotechnol 16:434–439PubMedGoogle Scholar
  27. Hou S, Yang K, Qin M, Feng XZ, Guan L, Yang Y, Wang C (2008) Patterning of cells on functionalized poly(dimethylsiloxane) surface prepared by hydrophobin and collagen modification. Biosens Bioelectron 24:912–916Google Scholar
  28. Hou S, Li X, Feng XZ, Wang R, Wang C, Yu L, Qiao MQ (2009) Surface modification using a novel type I hydrophobin HGFI. Anal Bioanal Chem 394:783–789PubMedGoogle Scholar
  29. Huanga Y, Zhanga S, Niua B, Wanga D, Wanga Z, Fenga S, Xua H, Konga D, Qiaoa M (2013) Poly(ɛ-caprolactone) modified with fusion protein containing self-assembled hydrophobin and functional peptide for selective capture of human blood outgrowth endothelial cells. Coll Surf B: Biointerfaces 101:361–369Google Scholar
  30. Janssen MI, van Leeuwen MBM, Scholtmeijer K, van Kooten TG, Dijkhuizen L, Wösten HAB (2002) Coating with genetic engineered hydrophobin promotes growth of fibroblasts on a hydrophobic solid. Biomaterials 23:4847–4854PubMedGoogle Scholar
  31. Janssen MI, van Leeuwen MBM, van Kooten TG, de Vries J, Dijkhuizen L, Wösten HAB (2004) Promotion of fibroblast activity by coating with hydrophobins in the β-sheet end state. Biomaterials 25:2731–2739PubMedGoogle Scholar
  32. Jensen BG, Andersen MR, Pedersen MH, Frisvad JC, Søndergaard I (2010) Hydrophobins from Aspergillus species cannot be clearly divided into two classes. BMC Res Notes 3:344PubMedCentralPubMedGoogle Scholar
  33. Joensuu JJ, Conley AJ, Lienemann M, Brandle JE, Linder MB, Menassa R (2010) Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana. Plant Physiol 152:622–633PubMedCentralPubMedGoogle Scholar
  34. Kershaw MJ, Talbot NJ (1998) Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet Biol 23:18–33PubMedGoogle Scholar
  35. Kershaw MJ, Thornton CR, Wakley GE, Talbot NJ (2005) Four conserved intramolecular disulphide linkages are required for secretion and cell wall localization of a hydrophobin during fungal morphogenesis. Mol Microbiol 56:117–125PubMedGoogle Scholar
  36. Kiiskinen L-L, Kruus K, Bailey M, Ylösmäki E, Siika-aho M, Saloheimo M (2004) Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology 150:3065–3074PubMedGoogle Scholar
  37. Kirkland BH, Keyhani NO (2011) Expression and purification of a functionally active class I fungal hydrophobin from the entomopathogenic fungus Beauveria bassiana in E. coli. J Ind Microbiol Biotechnol 38:327–335PubMedGoogle Scholar
  38. Krivosheeva O, Dėdinaitė A, Linder MB, Tilton RD, Claesson PM (2013) Kinetic and equilibrium aspects of adsorption and desorption of class II hydrophobins HFBI and HFBII at silicon oxynitride/water and air/water interfaces. Langmuir 29:2683–2691PubMedGoogle Scholar
  39. Kudo T, Sato Y, Tasaki Y, Hara T, Joh T (2011) Heterogeneous expression and emulsifying activity of class I hydrophobin from Pholiota nameko. Mycoscience 52:283–287Google Scholar
  40. Kurppa K, Hytönen VP, Nakari-Setäläa T, Kulomaa MS, Linder MB (2013) Molecular engineering of avidin and hydrophobin for functional self-assembling interfaces. Colloids Surf B:Biointerfaces 120:102–109Google Scholar
  41. Kwan AHY, Winefield RD, Sunde M, Matthews JM, Haverkamp RG, Templeton MD, Mackay JP (2006) Structural basis for rodlet assembly in fungal hydrophobins. Proc Natl Acad Sci U S A 103:3621–3626PubMedCentralPubMedGoogle Scholar
  42. Kwan AH, Macindoe I, Vukasin PV, Morris VK, Kass I, Gupte R, Mark AE, Templeton MD, Mackay JP, Sunde M (2008) The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. J Mol Biol 382:708–720PubMedGoogle Scholar
  43. Laaksonen P, Kivioja J, Paananen A, Kainlauri M, Kontturi K, Ahopelto J, Linder MB (2009) Selective nanopatterning using citrate-stabilized Au nanoparticles and cystein-modified amphiphilic protein. Langmuir 25:5185–5192PubMedGoogle Scholar
  44. Laaksonen P, Kainlauri M, Laaksonen T, Shchepetov A, Jiang H, Ahopelto J, Linder MB (2010) Interfacial engineering by proteins: exfoliation and functionalization of graphene by hydrophobins. Angew Chem Int Ed 49:4946–4949Google Scholar
  45. Lahtinen T, Linder MB, Nakari-Setälä T, Oker-Blom C (2008) Hydrophobin (HFBI): a potential fusion partner for one-step purification of recombinant proteins from insect cells. Protein Expr Purif 59:18–24PubMedGoogle Scholar
  46. Li X, Hou S, Feng X, Yu Y, Ma J, Li L (2009) Patterning of neural stem cells on poly(lactic-coglycolic acid) film modified by hydrophobin. Colloids Surf B: Biointerfaces 74:370–374PubMedGoogle Scholar
  47. Lienemann M, Gandier J-A, Joensuu JJ, Iwanaga A, Takatsuji Y, Haruyama T, Master E, Tenkanen M, Linder MB (2013) Structure-function relationships in hydrophobins: probing the role of charged side chains. AEM 79:5533–5538Google Scholar
  48. Linder M, Selber K, Nakari-Setälä T, Qiao M, Kula M-R, Penttilä M (2001) The hydrophobins HFBI and HFBII from Trichoderma reesei showing efficient interactions with nonionic surfactants in aqueous two-phase systems. Biomacromolecules 2:511–517PubMedGoogle Scholar
  49. Linder MB, Qiao M, Laumen F, Selber K, Hyytiä T, Nakari-Setälä T, Penttilä ME (2004) Efficient purification of recombinant proteins using hydrophobins as tags in surfactant-based two-phase systems. Biochemistry 43:11873–11882PubMedGoogle Scholar
  50. Littlejohn KA, Hooley P, Cox PW (2011) Bioinformatics predicts diverse Aspergillus hydrophobins with novel properties. Food Hydrocolloids 27:503–516Google Scholar
  51. Longobardi S, Gravagnuolo AM, Rea I, De Stefano L, Marino G, Giardina P (2014) Hydrophobin-coated plates as matrix-assisted laser desorption/ionization sample support for peptide/protein analysis. Anal Biochem 449:9–16PubMedGoogle Scholar
  52. Lumsdon SO, Green J, Stieglitz B (2005) Adsorption of hydrophobin proteins at hydrophobic and hydrophilic interfaces. Colloids Surf B Biointerfaces 44:172–178PubMedGoogle Scholar
  53. Macindoe I, Kwana AH, Rena Q, Morris VK, Yang W, Mackaya JP, Sunde M (2012) Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. PNAS E804-E811Google Scholar
  54. Mackay JP, Matthews JM, Winefield RD, Mackay LG, Haverkamp RG, Templeton MD (2001) The hydrophobin EAS is largely unstructured in solution and functions by forming amyloid-like structures. Structure 9:83–91PubMedGoogle Scholar
  55. Misra R, Li J, Cannon GC, Morgan SE (2006) Nanoscale reduction in surface friction of polymer surfaces modified with Sc3 hydrophobin from Schizophyllum commune. Biomacromolecules 7:1463–1470PubMedGoogle Scholar
  56. Morris VK, Ren Q, Macindoe I, Kwan AH, Byrne N, Sunde M (2011) Recruitment of class I hydrophobins to the air:water interface initiates a multi-step process of functional amyloid formation. JBC 286:15955–15963Google Scholar
  57. Morris VK, Kwan AH, Mackay JP, Sunde M (2012) Backbone and sidechain 1H, 13C and 15 N chemical shift assignments of the hydrophobin DewA from Aspergillus nidulans. Biomol NMR Assign 6:83–86PubMedGoogle Scholar
  58. Morris VK, Kwan AH, Mackay JP, Sunde M (2013) Analysis of the structure and conformational states of DewA gives insight into the assembly of the fungal hydrophobins. J Mol Biol 425:244–256PubMedGoogle Scholar
  59. Mustalahti E, Saloheimo M, Joensuu JJ (2013) Intracellular protein production in Trichoderma reesei (Hypocrea jecorina) with hydrophobin fusion technology. New Biotechnol 30:262–268Google Scholar
  60. Nakari-Setälä T, Azeredo J, Henriques M, Oliveira R, Teixeira J, Linder M, Penttilä M (2002) Expression of a fungal hydrophobin in the Saccharomyces cerevisiae cell wall: effect on cell surface properties and immobilization. AEM 68:3385–3391Google Scholar
  61. Niu B, Wang D, Yang Y, Xu H, Qiao M (2012a) Heterologous expression and characterization of the hydrophobin HFBI in Pichia pastoris and evaluation of its contribution to the food industry. Amino Acids 43:763–771PubMedGoogle Scholar
  62. Niu B, Huang Y, Zhang S, Wang D, Xu H, Kong D, Qiao M (2012b) Expression and characterization of hydrophobin HGFI fused with the cell-specific peptide TPS in Pichia pastoris. Protein Expres Purif 83:92–97Google Scholar
  63. Paananen A, Vuorimaa E, Torkkeli M, Penttilä ME, Kauranen M, Ikkala O, Lemmetyinen H, Serimaa R, Linder MB (2003) Structural hierarchy in molecular films of two class II hydrophobins. Biochemistry 42:5253–5258PubMedGoogle Scholar
  64. Paslay LC, Falgout L, Savin DA, Heinhorst S, Cannon GC, Morgan SE (2013) Kinetics and control of Self-assembly of ABH1 hydrophobin from the edible white button mushroom. Biomacromolecules 14:2283–2293PubMedGoogle Scholar
  65. Patravale VB, Date AA, Kulkarni MR (2004) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 56:827–840PubMedGoogle Scholar
  66. Pereira EO, Kolotilin I, Conley AJ, Menassa R (2014) Production and characterization of in planta transiently produced polygalacturanase from Aspergillus niger and its fusions with hydrophobin or ELP tags. BMC Biotechnol 14:59PubMedCentralPubMedGoogle Scholar
  67. Pille A, Kwan AH, Cheung I, Hampsey M, Aimanianda V, Delepierre M, Latgé JP, Sunde M, Guijarro I (2014) 1H, 13C and 15 N resonance assignments of the RodA hydrophobin from the opportunistic pathogen Aspergillus fumigatus. Biomol NMR assign. doi: 10.1007/s12104-014-9555-1 PubMedGoogle Scholar
  68. Qin M, Wang LK, Feng XZ, Yang YL, Wang R, Wang C, Yu L, Shao B, Qiao MQ (2007) Bioactive surface modification of mica and poly(dimethylsiloxane) with hydrophobins for protein immobilization. Langmuir 23:4465–4471PubMedGoogle Scholar
  69. Rea I, Giardina P, Longobardi S, Porro F, Casuscelli V, Rendina I, De Stefano L (2012) Hydrophobin Vmh2-glucose complexes self-assemble in nanometric biofilms. J R Soc Interface 9:2450–2456. doi: 10.1098/rsif.2012.0217 PubMedCentralPubMedGoogle Scholar
  70. Reger M, Hoffmann H (2012) Hydrophobin coated boehmite nanoparticles stabilizing oil in water emulsions. J Colloid Interf Sci 368:378–386Google Scholar
  71. Reger M, Sekine T, Okamoto T, Hoffmann H (2011) Unique emulsions based on biotechnically produced hydrophobins. Soft Matter 7:8248Google Scholar
  72. Reid G (2000) In: An YH, Friedman RJ (eds) Handbook of bacterial adhesion: principles, methods and applications. Totowa, Humana Press Inc.Google Scholar
  73. Ren Q, Kwan AH, Sunde M (2013a) Two forms and two faces, multiple states and multiple uses: properties and applications of the self-assembling fungal hydrophobins. Peptide Sci 100(6):601–612Google Scholar
  74. Ren Q, Kwan AH, Sunde M (2013b) Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins. Proteins 1: doi: 10.1002/prot.24473Google Scholar
  75. Reuter LJ, Bailey MJ, Joensuu JJ, Ritala A (2014) Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells. Plant Biotech J 12:402–410Google Scholar
  76. Rey AA, Hocher A, Kwan AH, Sunde M (2013) Backbone and sidechain 1H, 13C and 15 N chemical shift assignments of the hydrophobin MPG1 from the rice blast fungus Magnaporthe oryzae. Biomol NMR Assign 7:109–112PubMedGoogle Scholar
  77. Santhiya D, Burghard Z, Greiner C, Jeurgens LPH, Subkowski T, Bill J (2010) Bioinspired deposition of TiO2 thin films induced by hydrophobins. Langmuir 26:6494–6502PubMedGoogle Scholar
  78. Sapsford KE, Ligler FS (2004) Real-time analysis of protein adsorption to a variety of thin films. Biosens Bioelectron 19:1045–1055PubMedGoogle Scholar
  79. Sarparanta M, Bimbo LM, Rytkönen J, Mäkilä E, Laaksonen TJ, Laaksonen P, Nyman M, Salonen J, Linder MB, Hirvonen J, Santos HA, Airaksinen AJ (2012) Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol Pharmaceutics 9:654–663Google Scholar
  80. Schmoll M, Seibel C, Kotlowski C, Wöllert Genannt Vendt F, Liebmann B, Kubicek CP (2010) Recombinant production of an Aspergillus nidulans class I hydrophobin (DewA) in Hypocrea jecorina (Trichoderma reesei) is promoter-dependent. Appl Microbiol Biotechnol 88:95–103PubMedGoogle Scholar
  81. Scholtmeijer K, Janssen MI, Gerssen B, de Vocht ML, van Leeuwen BMM, van Kooten TG, Wösten HAB, Wessels JGH (2002) Surface modifications created by using engineered hydrophobins. Appl Environ Microbiol 68:1367–1373PubMedCentralPubMedGoogle Scholar
  82. Scholtmeijer K, Rink R, Hektor HJ, Wösten HAB (2005) Expression and engineering of fungal hydrophobins. In Applied mycology and biotechnology, Elsevier, Amsterdam, the Netherlands vol 5 Chapter 10Google Scholar
  83. Scholtmeijer K, de Vocht ML, Rink R, Robillard GT, Wösten HAB (2009) Assembly of the fungal SC3 hydrophobin into functional amyloid fibrils depends on its concentration and is promoted by cell wall polysaccharides. J Biol Chem 284:26309–26314PubMedCentralPubMedGoogle Scholar
  84. Schuurs TA, Schaeffer EA, Wessels JG (1997) Homology-dependent silencing of the SC3 gene in Schizophyllum commune. Genetics 147:589–596PubMedCentralPubMedGoogle Scholar
  85. Seidl-Seiboth V, Gruber S, Sezerman U, Schwecke T, Albayrak A, Neuhof T, Döhren V, Baker SE, Kubicek CP (2011) Novel hydrophobins from Trichoderma define a new hydrophobin subclass: protein properties, evolution, regulation and processing. J Mol Evol 72:339–351PubMedGoogle Scholar
  86. Szilvay GR, Nakari-Setälä T, Linder MB (2006) Behavior of Trichoderma reseei hydrophobins in solution: interactions, dynamics and multimer formation. Biochemistry 45:8590–8598PubMedGoogle Scholar
  87. Takahashi T, Maeda H, Yoneda S, Ohtaki S, Yamagata Y, Hasegawa F, Gomi K, Nakajima T, Abe K (2005) The fungal hydrophobin RolA recruits polyesterase and laterally moves on hydrophobic surfaces. Mol Mic 57:1780–1796Google Scholar
  88. Tchuenbou-Magaia FL, Norton IT, Cox PW (2009) Hydrophobins stabilised air-filled emulsions for the food industry. Food Hydrocolloids 23:1877–1885Google Scholar
  89. Torkkeli M, Serimaa R, Ikkala O, Linder MB (2002) Aggregation and self-assembly of hydrophobins from Trichoderma reesei: low-resolution structural models. Biophys J 83:2240–2247PubMedCentralPubMedGoogle Scholar
  90. Tucker IM, Petkov JT, Penfold J, Thomas RK, Li P, Cox AR, Hedges N, Webster JRP (2014) Spontaneous surface self-assembly in protein − surfactant mixtures: interactions between hydrophobin and ethoxylated polysorbate surfactants. J Phys Chem B 118:4867–4875PubMedGoogle Scholar
  91. Valo HK, Laaksonen PH, Peltonen LJ, Linder MB, Hirvonen JT, Laaksonen TJ (2010) Multifunctional hydrophobin: toward functional coatings for drug nanoparticles. ACS Nano 4:1750–1758PubMedGoogle Scholar
  92. Valo H, Kovalainen M, Laaksonen P, Häkkinen M, Auriola S, Peltonen L, Linder M, Järvinen K, Hirvonen J, Laaksonen T (2011) Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices-enhanced stability and release. J Controlled Release 156:390–397Google Scholar
  93. Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50:69–77PubMedGoogle Scholar
  94. Vejnovic I, Simmler L, Betz G (2010a) Investigation of different formulations for drug delivery through the nail plate. Int J Paharm 386:185–194Google Scholar
  95. Vejnovic I, Huonder C, Betz G (2010b) Permeation studies of novel terbinafine formulations containing hydrophobins through human nails in vitro. Int J Paharm 397:67–76Google Scholar
  96. Von Vacano B, Xu R, Hirth S, Herzenstiel I, Rückel M, Subkowski T, Baus U (2011) Hydrophobin can prevent secondary protein adsorption on hydrophobic substrates without exchange. Anal Bioanal Chem 400:2031–2040Google Scholar
  97. Wang X, de Vocht ML, de Jonge J, Poolman B, Robillard GT (2002) Structural changes and molecular interactions of hydrophobin SC3 in solution and on a hydrophobic surface. Protein Sci 11:1172–1181PubMedCentralPubMedGoogle Scholar
  98. Wang X, Permentier HP, Rink R, Kruijtzer JAW, Liskamp RMJ, Wösten HAB (2004a) Probing the self-assembly and the accompanying structural changes of hydrophobin SC3 on a hydrophobic surface by mass spectrometry. Biophys J 87:1919–1928PubMedCentralPubMedGoogle Scholar
  99. Wang X, Graveland-Bikker JF, de Kruif CG, Robillard GT (2004b) Oligomerization of hydrophobin SC3 in solution: from soluble state to self-assembly. Protein Sci 13:810–821PubMedCentralPubMedGoogle Scholar
  100. Wang R, Yang J-Y, Qin M, Wang L-K, Yu L, Shao B, Qiao M-Q, Wang C, Feng X-Z (2007) Biocompatible hydrophilic modifications of poly(dimethylsiloxane) using self-assembled hydrophobins. Chem Mater 19:3227–3231Google Scholar
  101. Wang Z, Feng S, Huang Y, Li S, Xu H, Zhang X, Bai Y, Qiao M (2010a) Expression and characterization of a Grifola frondosa hydrophobin in Pichia pastoris. Protein Expr Purif 72:19–25PubMedGoogle Scholar
  102. Wang Z, Huang Y, Li S, Xu H, Linder MB, Qiao M (2010b) Hydrophilic modification of polystyrene with hydrophobin for time-resolved immunofluorometric assay. Biosens Bioelectronics 26:1074–1079Google Scholar
  103. Wang X, Wang H, Huang Y, Zhao Z, Qin X, Wang Y, Miao Z, Chen Q, Qiao M (2010c) Noncovalently functionalized multi-wall carbon nanotubes in aqueous solution using the hydrophobin HFBI and their electroanalytical application. Biosens Bioelectronics 26:1104–1108Google Scholar
  104. Wang Z, Wang Y, Huang Y, Li S, Feng S, Xu H, Qiao M (2010d) Characterization and application of hydrophobin-dispersed multi-walled carbon nanotubes. Carbon 48:2890–2898Google Scholar
  105. Wang Z, Feng S, Huang Y, Qiao M, Zhang B, Xu H (2010e) Prokaryotic expression, purification, and polyclonal antibody production of a hydrophobin from Grifola frondosa. Acta Biochim Biophys 42:388–395Google Scholar
  106. Wasser SP (2011) Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol 89:1323–1332PubMedGoogle Scholar
  107. Weickert U, Wiesend F, Subkowski T, Eickhoff A, Reiss G (2011) Optimizing biliary stent patency by coating with hydrophobin alone or hydrophobin and antibiotics or heparin: an in vitro proof of principle study. Adv Med Sci 56:138–144PubMedGoogle Scholar
  108. Wessels JGH (1994) Developmental regulation of fungal cell wall formation. Annu Rev Phytopathol 32:413–437Google Scholar
  109. Wessels JGH, de Vries OMH, Asgeirsdóttir SA, Schuren FHJ (1991) Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell 3:793–799PubMedCentralPubMedGoogle Scholar
  110. Wohlleben W, Subkowski T, Bollschweiler C, von Vacano B, Liu Y, Schrepp W, Baus U (2010) Recombinantly produced hydrophobins from fungal analogues as highly surface-active performance proteins. Eur Biophys J 39:457–468PubMedGoogle Scholar
  111. Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646PubMedGoogle Scholar
  112. Wösten HAB, de Vocht ML (2000) Hydrophobins, the fungal coat unravelled. Biochim Biophys Acta 1469:79–86PubMedGoogle Scholar
  113. Wösten HAB, de Vries OMH, Wessels JGH (1993) Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer. Plant Cell 5:1567–1574PubMedCentralPubMedGoogle Scholar
  114. Wösten HAB, Asgeirsdóttir SA, Krook JH, Drenth JH, Wessels JGH (1994) The fungal hydrophobin Sc3p self-assembles at the surface of aerial hyphae as a protein membrane constituting the hydrophobic layer. Eur J Cell Biol 63:122–129PubMedGoogle Scholar
  115. Wösten HAB, van Wetter MA, Lugones LG, van der Mei HC, Busscher HJ, Wessels JGH (1999) How a fungus escapes the water to grow into the air. Curr Biol 9:85–88PubMedGoogle Scholar
  116. Yang W, Ren Q, Wu Y-N, Morris VK, Rey AA, Braet F, Kwan AH, Sunde M (2013) Surface functionalization of carbon nanomaterials by self-assembling hydrophobin proteins. Biopolymers 99:84–94PubMedGoogle Scholar
  117. Zampieri F, Wösten HAB, Scholtmeijer K (2010) Creating surface properties using a palette of hydrophobins. Materials 3:4607–4625Google Scholar
  118. Zhang XL, Penfold J, Thomas RK, Tucker IM, Petkov JT, Bent J, Cox A, Campbell RA (2011a) Adsorption behavior of hydrophobin and hydrophobin/surfactant mixtures at the air-water interface. Langmuir 27:11316–11323PubMedGoogle Scholar
  119. Zhang XL, Penfold J, Thomas RK, Tucker IM, Petkov JT, Bent J, Cox A, Grillo I (2011b) Self-assembly of hydrophobin and hydrophobin/surfactant mixtures in aqueous solution. Langmuir 27:10514–10522PubMedGoogle Scholar
  120. Zhang XL, Penfold J, Thomas RK, Tucker IM, Petkov JT, Bent J, Cox A (2011c) Adsorption behavior of hydrophobin and hydrophobin/surfactant mixtures at the solid-solution interface. Langmuir 27:10464–10474PubMedGoogle Scholar
  121. Zhang M, Wang Z, Wang Z, Feng S, Xu H, Zhao Q, Wang S, Fang J, Qiao M, Kong D (2011d) Immobilization of anti-CD31 antibody on electrospun poly(ε-caprolactone) scaffolds through hydrophobins for specific adhesion of endothelial cells. Coll Surf B: Biointerf 85:32–39Google Scholar
  122. Zhao ZX, Qiao MQ, Yin F, Shao B, Wu BY, Wang YY, Wang XS, Qin X, Li S, Chen Q (2007) Amperometric glucose biosensor based on self-assembly hydrophobin with high efficiency of enzyme utilization. Biosens Bioelectron 22:3021–3027PubMedGoogle Scholar
  123. Zhao ZX, Wang HC, Qin X, Wang XS, Qiao MQ, Anzai J, Chen Q (2009) Self-assembled film of hydrophobins on gold surfaces and its application to electrochemical biosensing. Colloids Surf B Biointerfaces 71:102–106PubMedGoogle Scholar
  124. Zykwinska A, Guillemette T, Bouchara J-P, Cuenot S (2014) Spontaneous self-assembly of SC3 hydrophobins into nanorods in aqueous solution. Biochim Biophys Acta 1844:1231–1237PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.MicrobiologyUtrecht UniversityUtrechtThe Netherlands
  2. 2.Plant BreedingWageningen University and Research CentreWageningenThe Netherlands

Personalised recommendations