Applied Microbiology and Biotechnology

, Volume 99, Issue 4, pp 1817–1826 | Cite as

Development of a new DNA vaccine based on mycobacterial ESAT-6 antigen delivered by recombinant invasive Lactococcus lactis FnBPA+

  • Vanessa Bastos Pereira
  • Tessália Diniz Luerce Saraiva
  • Bianca Mendes Souza
  • Meritxell Zurita-Turk
  • Marcela Santiago Pacheco Azevedo
  • Camila Prósperi De Castro
  • Pamela Mancha-Agresti
  • Janete Soares Coelho dos Santos
  • Ana Cristina Gomes Santos
  • Ana Maria Caetano Faria
  • Sophie Leclercq
  • Vasco Azevedo
  • Anderson Miyoshi
Applied genetics and molecular biotechnology

Abstract

The use of the food-grade bacterium Lactococcus lactis as a vehicle for the oral delivery of DNA vaccine plasmids constitutes a promising strategy for vaccination. The delivery of DNA plasmids into eukaryotic cells is of critical importance for subsequent DNA expression and effectiveness of the vaccine. In this context, the use of the recombinant invasive L. lactis FnBPA+ (fibronectin-binding protein A) strain for the oral delivery of the eukaryotic expression vector vaccination using lactic acid bacteria (pValac), coding for the 6-kDa early secreted antigenic target (ESAT-6) gene of Mycobacterium tuberculosis, could represent a new DNA vaccine strategy against tuberculosis. To this end, the ESAT-6 sequence was cloned into the pValac vector; the L. lactis fibronectin-binding protein A (FnBPA)+ (pValac:ESAT-6) strain was obtained, and its immunological profile was checked in BALB/c mice. This strain was able to significantly increase interferon gamma (IFN-γ) production in spleen cells, showing a systemic T helper 1 (Th1) cell response. The mice also showed a significant increase in specific secretory immunoglobulin A (sIgA) production in colon tissue and fecal extracts. Thus, this is the first time that L. lactis has been used to deliver a plasmid DNA harboring a gene that encodes an antigen against tuberculosis through mucous membranes.

Keywords

Lactococcus lactis DNA delivery system Intestinal mucosa Tuberculosis ESAT-6 

Supplementary material

253_2014_6285_MOESM1_ESM.pdf (321 kb)
ESM 1(PDF 320 kb)

References

  1. Bermúdez-Humarán LG, Kharrat P, Chatel JM, Langella P (2011) Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb Cell Fact 10(Suppl 1):S4. doi:10.1186/1475-2859-10-S1-S4 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Cervantes-Villagrana AR, Hernández-Pando R, Biragyn A, Castañeda-Delgado J, Bodogai M, Martínez-Fierro M, Sada E, Trujillo V, Enciso-Moreno A, Rivas-Santiago B (2013) Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model. Vaccine 31(4):676–684. doi:10.1016/j.vaccine.2012.11.042 PubMedCrossRefGoogle Scholar
  3. Chang-hong S, Xiao-wu W, Hai Z, Ting-fen Z, Li-mei W, Zhi-kai X (2008) Immune responses and protective efficacy of the gene vaccine expressing Ag85B and ESAT6 fusion protein from Mycobacterium tuberculosis. DNA Cell Biol 27(4):199–207. doi:10.1089/dna.2007.0648 PubMedCrossRefGoogle Scholar
  4. Chatel JM, Pothelune L, Ah-Leung S, Corthier G, Wal JM, Langella P (2008) In vivo transfer of plasmid from food-grade transiting lactococci to murine epithelial cells. Gene Ther 15(16):1184–1190. doi:10.1038/gt.2008.59 PubMedCrossRefGoogle Scholar
  5. Del Carmen S, Zurita-Turk M, Lima FA, dos Santos JSC, Leclecq SY, Chatel JM, Azevedo V, Leblanc AM, Miyoshi A, Leblanc JG (2013) A novel interleukin-10 DNA mucosal delivery system attenuates intestinal inflammation in a mouse model. Eur J Inflamm 11(3):25–38Google Scholar
  6. Dou J, Wang Y, Yu F, Yang H, Wang J, He X, Xu W, Chen J, Hu K (2012) Protection against Mycobacterium tuberculosis challenge in mice by DNA vaccine Ag85A-ESAT-6-IL-21 priming and BCG boosting. Int J Immunogenet 39(2):183–190. doi:10.1111/j.1744-313X.2011.01066.x PubMedCrossRefGoogle Scholar
  7. Dunham SP (2002) The application of nucleic acid vaccines in veterinary medicine. Res Vet Sci 73(1):9–16PubMedCrossRefGoogle Scholar
  8. Fan X, Gao Q, Fu R (2007) DNA vaccine encoding ESAT-6 enhances the protective efficacy of BCG against Mycobacterium tuberculosis infection in mice. Scand J Immunol 66(5):523–528PubMedCrossRefGoogle Scholar
  9. Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154(1):1–9PubMedCentralPubMedGoogle Scholar
  10. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual 4th ed. Cold Spring Harbor, New YorkGoogle Scholar
  11. Guimarães VD, Innocentin S, Lefèvre F, Azevedo V, Wal JM, Langella P, Chatel JM (2006) Use of native lactococci as vehicles for delivery of DNA into mammalian epithelial cells. Appl Environ Microbiol 72(11):7091–7097PubMedCentralPubMedCrossRefGoogle Scholar
  12. Guimarães V, Innocentin S, Chatel JM, Lefevre F, Langella P, Azevedo V, Miyoshi A (2009) A new plasmid vector for DNA delivery using lactococci. Genet Vaccines Ther 7:1–24. doi:10.1186/1479-0556-7-4 CrossRefGoogle Scholar
  13. Innocentin S, Guimarães V, Myoshi A, Azevedo V, Langella P, Chatel JM, Lefèvre F (2009) Lactococcus lactis expressing either Staphylococcus aureus fibronectin-binding protein A or Listeria monocytogenes internalin A can efficiently internalize and deliver DNA in human epithelial cells. Appl Environ Microbiol 75(14):4870–4878. doi:10.1128/AEM. 00825-09 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Lalvani A, Pathan AA, Durkan H, Wilkinson KA, Whelan A, Deeks JJ, Reece WH, Latif M, Pasvol G, Hill AV (2001) Enhanced contact tracing and spatial tracking of Mycobacterium tuberculosis infection by enumeration of antigen-specific T cells. Lancet 357(9273):2017–2021PubMedCrossRefGoogle Scholar
  15. Langella P, Le Loir Y, Ehrlich SD, Gruss A (1993) Efficient plasmid mobilization by pIP501 in Lactococcus lactis subsp. lactis. J Bacteriol 175(18):5806–5813PubMedCentralPubMedGoogle Scholar
  16. Liu L, Tran V, Leung AS, Alexander DC, Zhu B (2009) BCG vaccines: their mechanisms of attenuation and impact on safety and protective efficacy. Hum Vaccin 5(2):70–78PubMedCrossRefGoogle Scholar
  17. Lu J, Wang C, Zhou Z, Zhang Y, Cao T, Shi C, Chen Z, Chen L, Cai C, Fan X (2011) Immunogenicity and protective efficacy against murine tuberculosis of a prime-boost regimen with BCG and a DNA vaccine expressing ESAT-6 and Ag85A fusion protein. Clin Dev Immunol 2011:617892. doi:10.1155/2011/617892 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Mustafa AS, Oftung F, Amoudy HA, Madi NM, Abal AT, Shaban F, Rosen Krands I, Andersen P (2000) Multiple epitopes from the Mycobacterium tuberculosis ESAT-6 antigen are recognized by antigen-specific human T cell lines. Clin Infect Dis 30:S201–S205PubMedCrossRefGoogle Scholar
  19. Mustafa AS, Shaban FA, Al-Attiyah R, Abal AT, El-Shamy AM, Andersen P, Oftung F (2003) Human Th1 cell lines recognize the Mycobacterium tuberculosis ESAT-6 antigen and its peptides in association with frequently expressed HLA class II molecules. Scand J Immunol 57(2):125–134PubMedCrossRefGoogle Scholar
  20. Pereira VB, Zurita-Turk M, Saraiva TDL, Castro CP, Souza BM, Mancha-Agrest P, Lima FA, Pfeiffer VN, Azevedo MSP, Rocha CS, Pontes DS, Azevedo V, Miyoshi A (2014) DNA vaccines approach: from concepts to applications. World J Vaccin 4:50–71. doi:10.4236/wjv.2014.42008 CrossRefGoogle Scholar
  21. Pontes D, Innocentin S, Del Carmen S, Almeida JF, Leblanc JG, de Moreno de Leblanc A, Blugeon S, Cherbuy C, Lefèvre F, Azevedo V, Miyoshi A, Langella P, Chatel JM (2012) Production of fibronectin binding protein a at the surface of Lactococcus lactis increases plasmid transfer in vitro and in vivo. PLoS One 7(9):e44892. doi:10.1371/journal.pone.0044892 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Pym AS, Brodin P, Brosch R, Huerre M, Cole ST (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46(3):709–717PubMedCrossRefGoogle Scholar
  23. Que YA, Francois P, Haefliger JA, Entenza JM, Vaudaux P, Moreillon P (2001) Reassessing the role of Staphylococcus aureus clumping factor and fibronectin-binding protein by expression in Lactococcus lactis. Infect Immun 69(10):6296–6302PubMedCentralPubMedCrossRefGoogle Scholar
  24. Schoen C, Stritzker J, Goebel W, Pilgrim S (2004) Bacteria as DNA vaccine carriers for genetic immunization. Int J Med Microbiol 294(5):319–335PubMedCrossRefGoogle Scholar
  25. Wang QM, Sun SH, Hu ZL, Yin M, Xiao CJ, Zhang JC (2004) Improved immunogenicity of a tuberculosis DNA vaccine encoding ESAT6 by DNA priming and protein boosting. Vaccine 22(27–28):3622–3627PubMedCrossRefGoogle Scholar
  26. Wang QL, Pan Q, Ma Y, Wang K, Sun P, Liu S, Zhang XL (2009) An attenuated Salmonella-vectored vaccine elicits protective immunity against Mycobacterium tuberculosis. Vaccine 27(48):6712–6722. doi:10.1016/j.vaccine.2009.08.096 PubMedCrossRefGoogle Scholar
  27. Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6(5):349–362. doi:10.1038/nrmicro1840 PubMedCrossRefGoogle Scholar
  28. Xu J, Xu W, Chen X, Zhao D, Wang Y (2008) Recombinant DNA vaccine of the early secreted antigen ESAT-6 by Mycobacterium tuberculosis and Flt3 ligand enhanced the cell-mediated immunity in mice. Vaccine 26(35):4519–4525. doi:10.1016/j.vaccine.2008.06.044 PubMedCrossRefGoogle Scholar
  29. Xu Y, Liu W, Shen H, Yan J, Yang E, Wang H (2010) Recombinant Mycobacterium bovis BCG expressing chimaeric protein of Ag85B and ESAT-6 enhances immunostimulatory activity of human macrophages. Microbes Infect 12(8–9):683–689. doi:10.1016/j.micinf.2010.04.002 PubMedCrossRefGoogle Scholar
  30. Yu F, Wang J, Dou J, Yang H, He X, Xu W, Zhang Y, Hu K, Gu N (2012) Nanoparticle-based adjuvant for enhanced protective efficacy of DNA vaccine Ag85A-ESAT-6-IL-21 against Mycobacterium tuberculosis infection. Nanomedicine 8(8):1337–1344. doi:10.1016/j.nano.2012.02.015 PubMedCrossRefGoogle Scholar
  31. Yuan W, Dong N, Zhang L, Liu J, Lin S, Xiang Z, Qiao H, Tong W, Qin C (2012) Immunogenicity and protective efficacy of a tuberculosis DNA vaccine expressing a fusion protein of Ag85B-Esat6-HspX in mice. Vaccine 30(14):2490–2497. doi:10.1016/j.vaccine.2011.06.029 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Vanessa Bastos Pereira
    • 1
  • Tessália Diniz Luerce Saraiva
    • 1
  • Bianca Mendes Souza
    • 1
  • Meritxell Zurita-Turk
    • 1
  • Marcela Santiago Pacheco Azevedo
    • 1
  • Camila Prósperi De Castro
    • 1
  • Pamela Mancha-Agresti
    • 1
  • Janete Soares Coelho dos Santos
    • 2
  • Ana Cristina Gomes Santos
    • 3
  • Ana Maria Caetano Faria
    • 3
  • Sophie Leclercq
    • 2
  • Vasco Azevedo
    • 1
  • Anderson Miyoshi
    • 1
  1. 1.Laboratório de Genética Celular e Molecular, Instituto de Ciências BiológicasUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Laboratorio de Inovação BiotecnológicaFundação Ezequiel Dias, Minas GeraisBelo HorizonteBrazil
  3. 3.Laboratório de Imunobiologia, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations