Applied Microbiology and Biotechnology

, Volume 99, Issue 7, pp 3291–3302 | Cite as

Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes

Environmental biotechnology

Abstract

Both Bacteria and Archaea might be involved in various biogeochemical processes in lacustrine sediment ecosystems. However, the factors governing the intra-lake distribution of sediment bacterial and archaeal communities in various freshwater lakes remain unclear. The present study investigated the sediment bacterial and archaeal communities in 13 freshwater lakes on the Yunnan Plateau. Quantitative PCR assay showed a large variation in bacterial and archaeal abundances. Illumina MiSeq sequencing illustrated high bacterial and archaeal diversities. Bacterial abundance was regulated by sediment total organic carbon and total nitrogen, and water depth, while nitrate nitrogen was an important determinant of bacterial diversity. Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, and Verrucomicrobia were the major components of sediment bacterial communities. Proteobacteria was the largest phylum, but its major classes and their proportions varied greatly among different lakes, affected by sediment nitrate nitrogen. In addition, both Euryarchaeota and Crenarchaeota were important members in sediment archaeal communities, while unclassified Archaea usually showed the dominance.

Keywords

Archaea Bacteria High-throughput sequencing Lake sediment Microbial community structure Microbial biomass Microbial diversity 

Supplementary material

253_2014_6262_MOESM1_ESM.pdf (240 kb)
ESM 1(PDF 240 kb)

References

  1. Ahila NK, Kannapiran E, Ravindran J, Ramkumar VS (2014) Studies on methanogenic consortia associated with mangrove sediments of Ennore. J Environ Biol 35:649–654Google Scholar
  2. Bai YH, Shi Q, Wen DH, Li ZX, Jefferson WA, Feng CP, Tang XY (2012) Bacterial communities in the sediments of Dianchi Lake a partitioned eutrophic waterbody in China. PLoS One 7:e37796CrossRefPubMedCentralPubMedGoogle Scholar
  3. Bhattarai S, Ross KA, Schmid M, Anselmetti FS, Burgmann H (2012) Local conditions structure unique archaeal communities in the anoxic sediments of meromictic Lake Kivu. Microb Ecol 64:291–310CrossRefPubMedGoogle Scholar
  4. Borrel G, Lehours AC, Crouzet O, Jezequel D, Rockne K, Kulczak A, Duffaud E, Joblin K, Fonty G (2012) Stratification of archaea in the deep sediments of a freshwater meromictic lake: vertical shift from methanogenic to uncultured archaeal lineages. PLoS One 7:e43346CrossRefPubMedCentralPubMedGoogle Scholar
  5. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedCentralPubMedGoogle Scholar
  6. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624CrossRefPubMedCentralPubMedGoogle Scholar
  7. Chaudhary PP, Brablcova L, Buriankova I, Rulik M (2013) Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments. Appl Microbiol Biotechnol 97:7553–7562CrossRefPubMedGoogle Scholar
  8. Cheng W, Zhang JX, Wang Z, Wang M, Xie SG (2014) Bacterial communities in sediments of a drinking water reservoir. Ann Microbiol 64:875–878CrossRefGoogle Scholar
  9. Cupples AM (2013) RDX degrading microbial communities and the prediction of microorganisms responsible for RDX bioremediation. Int Biodeterior Biodegrad 85:260–270CrossRefGoogle Scholar
  10. Dai JY, Tang XM, Gao G, Chen D, Shao KQ, Cai XL, Zhang L (2013) Effects of salinity and nutrients on sedimentary bacterial communities in oligosaline Lake Bosten northwestern China. Aquat Microb Ecol 69:123–134CrossRefGoogle Scholar
  11. Dong HL, Zhang GX, Jiang HC, Yu BS, Chapman LR, Lucas CR, Fields MW (2006) Microbial diversity in sediments of saline Qinghai Lake, China: Linking geochemical controls to microbial ecology. Microb Ecol 51:65–82CrossRefPubMedGoogle Scholar
  12. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998CrossRefPubMedGoogle Scholar
  13. Fuentes S, Mendez V, Aguila P, Seeger M (2014) Bioremediation of petroleum hydrocarbons: catabolic genes microbial communities and applications. Appl Microbiol Biotechnol 98:4781–4794CrossRefPubMedGoogle Scholar
  14. Gomes BC, Adorno MAT, Okada DY, Delforno TP, Gomes PCFL, Sakamoto IK, Varesche MBA (2014) Analysis of a microbial community associated with polychlorinated biphenyl degradation in anaerobic batch reactors. Biodegradation 25:797–810CrossRefPubMedGoogle Scholar
  15. Green TJ, Barnes AC, Bartkow M, Gale D, Grinham A (2011) Sediment bacteria and archaea community analysis and nutrient fluxes in a sub-tropical polymictic reservoir. Aquat Microb Ecol 65:287–302CrossRefGoogle Scholar
  16. Haller L, Tonolla M, Zopfi J, Peduzzi R, Wildi W, Pote J (2011) Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels (Lake Geneva Switzerland). Water Res 45:1213–1228CrossRefPubMedGoogle Scholar
  17. Hocking WP, Stokke R, Roalkvam I, Steen IH (2014) Identification of key components in the energy metabolism of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus by transcriptome analyses. Front Microbiol 5:95CrossRefPubMedCentralPubMedGoogle Scholar
  18. Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi Y, Haruta S (2013) Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge and proposal of Methanomassiliicoccaceae fam. nov and Methanomassiliicoccales ord. nov. for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 28:244–250CrossRefPubMedCentralPubMedGoogle Scholar
  19. Jiang HC, Dong HL, Yu BS, Liu XQ, Li YL, Ji SS, Zhang CLL (2007) Microbial response to salinity change in Lake Chaka a hypersaline lake on Tibetan plateau. Environ Microbiol 9:2603–2621CrossRefPubMedGoogle Scholar
  20. Jiang XT, Peng X, Deng GH, Sheng HF, Wang Y, Zhou HW, Tam NFY (2013) Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb Ecol 66:96–104CrossRefPubMedGoogle Scholar
  21. Ju F, Zhang T (2014) Novel microbial populations in ambient and mesophilic biogas-producing and phenol-degrading consortia unraveled by high-throughput sequencing. Microb Ecol 68:235–246CrossRefPubMedGoogle Scholar
  22. Jung J, Yeom J, Kim J, Han J, Lim HS, Park H, Hyun S, Park W (2011) Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils. Res Microbiol 162:1018–1026CrossRefPubMedGoogle Scholar
  23. Jung MY, Park SJ, Kim SJ, Kim JG, Damste JSS, Jeon CO, Rhee SK (2014) A mesophilic autotrophic ammonia-oxidizing archaeon of thaumarchaeal group i.1a cultivated from a deep oligotrophic soil horizon. Appl Environ Microbiol 80:3645–3655CrossRefPubMedCentralPubMedGoogle Scholar
  24. Kim M, Kim WS, Tripathi BM, Adams J (2014) Distinct bacterial communities dominate tropical and temperate zone leaf litter. Microb Ecol 67:837–848CrossRefPubMedGoogle Scholar
  25. Lentini V, Gugliandolo C, Bunk B, Overmann J, Maugeri TL (2014) Diversity of prokaryotic community at a shallow marine hydrothermal site elucidated by Illumina sequencing technology. Curr Microbiol 69:457–466CrossRefPubMedGoogle Scholar
  26. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, New YorkGoogle Scholar
  27. Liao XB, Chen C, Wang Z, Wan R, Chang CH, Zhang XJ, Xie SG (2013) Pyrosequencing analysis of bacterial communities in drinking water biofilters receiving influents of different types. Process Biochem 48:703–707CrossRefGoogle Scholar
  28. Liao XB, Chen C, Zhang JX, Dai Y, Zhang XJ, Xie SG (2014) Operational performance biomass and microbial community structure: Impacts of backwashing on drinking water biofilter. Environ Sci Pollut Res. doi:10.1007/s11356-014-3393-7 Google Scholar
  29. Lim J, Woodward J, Tulaczyk S, Christoffersen P, Cummings SP (2011) Analysis of the microbial community and geochemistry of a sediment core from Great Slave Lake Canada. Antonie Van Leeuwenhoek 99:423–430CrossRefPubMedGoogle Scholar
  30. Liu FH, Lin GH, Gao G, Qin BQ, Zhang JS, Zhao GP, Zhou ZH, Shen JH (2009) Bacterial and archaeal assemblages in sediments of a large shallow freshwater lake Lake Taihu as revealed by denaturing gradient gel electrophoresis. J Appl Microbiol 106:1022–1032CrossRefPubMedGoogle Scholar
  31. Liu L, Peng Y, Zheng XH, Xiao L, Yang LY (2010) Vertical structure of bacterial and archaeal communities within the sediment of a eutrophic lake as revealed by culture-independent methods. J Freshw Ecol 25:565–573CrossRefGoogle Scholar
  32. Liu Y, Zhang JX, Zhao L, Zhang XL, Xie SG (2014a) Spatial distribution of bacterial communities in high-altitude freshwater wetland sediment. Limnology 15:249–256CrossRefGoogle Scholar
  33. Liu Y, Zhang JX, Zhang XL, Xie SG (2014b) Depth-related changes of sediment ammonia-oxidizing microorganisms in a high-altitude freshwater wetland. Appl Microbiol Biotechnol 98:5697–5707CrossRefPubMedGoogle Scholar
  34. Liu Y, Zhang JX, Zhao L, Li YZ, Yang YY, Xie SG (2014c) Aerobic and nitrite-dependent methane-oxidizing microorganisms in sediments of freshwater lakes on the Yunnan Plateau. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6141-5 PubMedCentralGoogle Scholar
  35. Lucheta AR, Otero XL, Macias F, Lambais MR (2013) Bacterial and archaeal communities in the acid pit lake sediments of a chalcopyrite mine. Extremophiles 17:941–951CrossRefPubMedGoogle Scholar
  36. Mandic-Mulec I, Gorenc K, Petrisic MG, Faganeli J, Ogrinc N (2012) Methanogenesis pathways in a stratified eutrophic alpine lake (Lake Bled Slovenia). Limnol Oceanogr 57:868–880CrossRefGoogle Scholar
  37. Margesin R, Moertelmaier C, Mair J (2013) Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes phenol anthracene pyrene) by four actinobacterial strains. Int Biodeterior Biodegrad 84:SI 185–SI 191CrossRefGoogle Scholar
  38. Martins G, Terada A, Ribeiro DC, Corral AM, Brito AG, Smets BF, Nogueira R (2011) Structure and activity of lacustrine sediment bacteria involved in nutrient and iron cycles. FEMS Microbiol Ecol 77:666–679CrossRefPubMedGoogle Scholar
  39. Nam YD, Sung Y, Chang HW, Roh SW, Kim KH, Rhee SK, Kim JC, Kim JY, Yoon JH, Bae JW (2008) Characterization of the depth-related changes in the microbial communities in Lake Hovsgol sediment by 16S rRNA gene-based approaches. J Microbiol 46:125–136CrossRefPubMedGoogle Scholar
  40. Nelson MC, Morrison HG, Benjamino J, Grim SL, Graf J (2014) Analysis optimization and verification of Illumina-generated 16S rRNA gene amplicon surveys. PLoS One 9:e94249CrossRefPubMedCentralPubMedGoogle Scholar
  41. Polonia ARM, Cleary DFR, Duarte LN, de Voogd NJ, Gomes NCM (2014) Composition of Archaea in seawater sediment and sponges in the Kepulauan Seribu reef system Indonesia. Microb Ecol 67:553–567CrossRefPubMedGoogle Scholar
  42. Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, Hojberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T (2013) Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun 4:1428CrossRefPubMedGoogle Scholar
  43. Rodrigues T, Catao E, Bustamante MMC, Quirino BF, Kruger RH, Kyaw CM (2014) Seasonal effects in a lake sediment archaeal community of the Brazilian Savanna. Archaea 2014:957145CrossRefPubMedCentralPubMedGoogle Scholar
  44. Rubin BER, Gibbons SM, Kennedy S, Hampton-Marcell J, Owens S, Gilbert JA (2013) Investigating the impact of storage conditions on microbial community composition in soil samples. PLoS One 8:UNSP e70460CrossRefGoogle Scholar
  45. Shehab N, Li D, Amy GL, Logan BE, Saikaly PE (2013) Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells open circuit and sealed-off reactors. Appl Microbiol Biotechnol 97:9885–9895CrossRefPubMedGoogle Scholar
  46. Shivaji S, Kumari K, Kishore KH, Pindi PK, Rao PS, Srinivas TNR, Asthana R, Ravindra R (2011) Vertical distribution of bacteria in a lake sediment from Antarctica by culture-independent and culture-dependent approaches. Res Microbiol 162:191–203CrossRefPubMedGoogle Scholar
  47. Song H, Li Z, Du B, Wang G, Ding Y (2012) Bacterial communities in sediments of the shallow Lake Dongping in China. J Appl Microbiol 112:79–89CrossRefPubMedGoogle Scholar
  48. Staley C, Unno T, Gould TJ, Jarvis B, Phillips J, Cotner JB, Sadowsky MJ (2013) Application of Illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. J Appl Microbiol 115:1147–1158CrossRefPubMedGoogle Scholar
  49. Steger K, Premke K, Gudasz C, Sundh I, Tranvik LJ (2011) Microbial biomass and community composition in boreal lake sediments. Limnol Oceanogr 56:725–733CrossRefGoogle Scholar
  50. Swan BK, Ehrhardt CJ, Reifel KM, Moreno LI, Valentine DL (2010) Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake the Salton Sea. Appl Environ Microbiol 76:757–768CrossRefPubMedCentralPubMedGoogle Scholar
  51. Tang XM, Gao G, Chao JY, Wang XD, Zhu GW, Qin BQ (2010) Dynamics of organic-aggregate-associated bacterial communities and related environmental factors in Lake Taihu a large eutrophic shallow lake in China. Limnol Oceanogr 55:469–480CrossRefGoogle Scholar
  52. Thevenon F, Graham ND, Herbez A, Wildi W, Pote J (2011) Spatio-temporal distribution of organic and inorganic pollutants from Lake Geneva (Switzerland) reveals strong interacting effects of sewage treatment plant and eutrophication on microbial abundance. Chemosphere 84:609–617CrossRefPubMedGoogle Scholar
  53. Villaescusa JA, Casamayor EO, Rochera C, Velazquez D, Chicote A, Quesada A, Camacho A (2011) Analysis of the microbial community and geochemistry of a sediment core from Great Slave Lake Canada. Antonie Van Leeuwenhoek 99:423–430CrossRefGoogle Scholar
  54. Wan R, Wang Z, Xie SG (2014) Dynamics of communities of bacteria and ammonia-oxidizing microorganisms in response to simazine attenuation in agricultural soil. Sci Total Environ 472:502–508CrossRefPubMedGoogle Scholar
  55. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefPubMedCentralPubMedGoogle Scholar
  56. Wang XY, Wang C, Bao LL, Xie SG (2014) Abundance and community structure of ammonia-oxidizing microorganisms in reservoir sediment and adjacent soils. Appl Microbiol Biotechnol 98:1883–1892CrossRefPubMedGoogle Scholar
  57. Wu HT, Zhang JX, Mi ZL, Xie SG, Chen C, Zhang XJ (2014) Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6095-7 PubMedCentralGoogle Scholar
  58. Xiong JB, Liu YQ, Lin XG, Zhang HY, Zeng J, Hou JZ, Yang YP, Yao TD, Knight R, Chu HY (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14:SI 2457–SI 2466CrossRefGoogle Scholar
  59. Yang Y, Yu K, Xia Y, Lau FTK, Tang DTW, Fung WC, Fang HHP, Zhang T (2014) Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants. Appl Microbiol Biotechnol 98:5709–5718CrossRefPubMedGoogle Scholar
  60. Ye WJ, Liu XL, Lin SQ, Tan J, Pan JL, Li DT, Yang H (2009) The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu. FEMS Microbiol Ecol 70:263–276CrossRefGoogle Scholar
  61. Zeng J, Yang LY, Li JY, Liang Y, Xiao L, Jiang LJ, Zhao DY (2009) Vertical distribution of bacterial community structure in the sediments of two eutrophic lakes revealed by denaturing gradient gel electrophoresis (DGGE) and multivariate analysis techniques. World J Microbiol Biotechnol 25:225–233CrossRefGoogle Scholar
  62. Zhang HH, Huang TL (2013) Archaeal community structure and quantity in the oxygen deficient sediments from three water supply reservoirs. J Pure Appl Microbiol 7:2783–2789Google Scholar
  63. Zhang JX, Zhang XL, Liu Y, Xie SG, Liu YG (2014) Bacterioplankton communities in a high-altitude freshwater wetland. Ann Microbiol 64:1405–1411CrossRefGoogle Scholar
  64. Zhao DY, Ma T, Zeng J, Yan WM, Jiang CL, Feng JW, Xu YN, Zhao HZ (2011) Phospholipid fatty acids analysis of the vertical distribution of microbial communities in eutrophic lake sediments. Int J Environ Sci Technol 8:571–580CrossRefGoogle Scholar
  65. Zhou XD, Wang QF, Wang Z, Xie SG (2013) Nitrogen impacts on atrazine-degrading Arthrobacter strain and bacterial community structure in soil microcosms. Environ Sci Pollut Res 20:2484–2491CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and EngineeringPeking UniversityBeijingChina
  2. 2.Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-WatershedKunmingChina
  3. 3.Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and EngineeringPeking UniversityBeijingChina

Personalised recommendations