Applied Microbiology and Biotechnology

, Volume 99, Issue 2, pp 623–636 | Cite as

Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice

  • Ferdinand Ruedinger
  • Antonina LavrentievaEmail author
  • Cornelia Blume
  • Iliyana Pepelanova
  • Thomas Scheper


Hydrogels have become one of the most popular platforms for three-dimensional (3D) cultivation of mammalian cells. The enormous versatility of hydrogel materials makes it possible to design scaffolds with predefined mechanical properties, as well as with desired biofunctionality. 3D hydrogel constructs have been used for a variety of applications, including tissue engineering of microorgan systems, drug delivery, cytotoxicity testing, and drug screening. Moreover, 3D culture is applied for investigating cellular physiology, stem cell differentiation, and tumor models and for studying interaction mechanisms between the extracellular matrix and cells. In this paper, we review current examples of performance-based hydrogel design for 3D cell culture applications. A major emphasis is placed on a description of how standard analytical protocols and imaging techniques are being adapted to analysis of 3D cell culture in hydrogel systems.


Hydrogel 3D cell culture Mammalian cell culture 3D analytics Material design 



This work was performed in the framework BIOFABRICATION FOR NIFE funded by the state of Lower Saxony, Germany.


  1. Agarwal P, Zhao S, Bielecki P, Rao W, Choi JK, Zhao Y, Yu J, Zhang W, He X (2013) One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab Chip 13(23):4525–4533PubMedPubMedCentralCrossRefGoogle Scholar
  2. Al-Abboodi A, Fu J, Doran PM, Tan TTY, Chan PPY (2014) Injectable 3D hydrogel scaffold with tailorable porosity post-implantation. Adv Healthc Mat 3(5):725–736CrossRefGoogle Scholar
  3. Alessandri K, Sarangi BR, Gurchenkov VV, Sinha B, Kiessling TR, Fetler L, Rico F, Scheuring S, Lamaze C, Simon A, Geraldo S, Vignjevic D, Domejean H, Rolland L, Funfak A, Bibette J, Bremond N, Nassoy P (2013) Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Proc Natl Acad Sci U S A 110(37):14843–14848PubMedPubMedCentralCrossRefGoogle Scholar
  4. Allazetta S, Hausherr TC, Lutolf MP (2013) Microfluidic synthesis of cell-type-specific artificial extracellular matrix hydrogels. Biomacromolecules 14(4):1122–1131PubMedCrossRefGoogle Scholar
  5. Almany L, Seliktar D (2005) Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26(15):2467–2477PubMedCrossRefGoogle Scholar
  6. Anderson SB, Lin CC, Kuntzler DV, Anseth KS (2011) The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials 32(14):3564–3574PubMedPubMedCentralCrossRefGoogle Scholar
  7. Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 16(4):371–383PubMedPubMedCentralCrossRefGoogle Scholar
  8. Antoine EE, Vlachos PP, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B RevGoogle Scholar
  9. Appelman TP, Mizrahi J, Elisseeff JH, Seliktar D (2009) The differential effect of scaffold composition and architecture on chondrocyte response to mechanical stimulation. Biomaterials 30(4):518–525PubMedCrossRefGoogle Scholar
  10. Ast C, Schmalzlin E, Lohmannsroben HG, van Dongen JT (2012) Optical oxygen micro- and nanosensors for plant applications. Sensors (Basel) 12(6):7015–7032CrossRefGoogle Scholar
  11. Astashkina A, Grainger DW (2014) Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev 69–70:1–18PubMedCrossRefGoogle Scholar
  12. Auger FA, Gibot L, Lacroix D (2013) The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng 15:177–200PubMedCrossRefGoogle Scholar
  13. Bancroft GN, Sikavitsas VI, Mikos AG (2003) Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng 9(3):549–554PubMedCrossRefGoogle Scholar
  14. Baraniak PR, McDevitt TC (2012) Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res 347(3):701–711PubMedCrossRefGoogle Scholar
  15. Bhattacharya M, Malinen MM, Lauren P, Lou YR, Kuisma SW, Kanninen L, Lille M, Corlu A, GuGuen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164(3):291–298PubMedCrossRefGoogle Scholar
  16. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26):6020–6041PubMedCrossRefGoogle Scholar
  17. Bracher M, Bezuidenhout D, Lutolf MP, Franz T, Sun M, Zilla P, Davies NH (2013) Cell specific ingrowth hydrogels. Biomaterials 34(28):6797–6803PubMedCrossRefGoogle Scholar
  18. Breslin S, O’Driscoll L (2013) Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 18(5–6):240–249PubMedCrossRefGoogle Scholar
  19. Cabanas-Danés J, Huskens J, Jonkheijm P (2014) Chemical strategies for the presentation and delivery of growth factors. J Mater Chem B 2(17):2381–2394CrossRefGoogle Scholar
  20. Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M, Del Bue A, Furia L, Faretta M, Diaspro A (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8(12):1047–1049PubMedCrossRefGoogle Scholar
  21. Cellesi F, Weber W, Fussenegger M, Hubbell JA, Tirelli N (2004) Towards a fully synthetic substitute of alginate: optimization of a thermal gelation/chemical cross-linking scheme (“tandem” gelation) for the production of beads and liquid-core capsules. Biotechnol Bioeng 88(6):740–749PubMedCrossRefGoogle Scholar
  22. Chan HF, Zhang Y, Ho YP, Chiu YL, Jung Y, Leong KW (2013) Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci Rep 3:3462PubMedPubMedCentralGoogle Scholar
  23. Chang TT, Hughes-Fulford M (2009) Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes. Tissue Eng Part A 15(3):559–567PubMedCrossRefGoogle Scholar
  24. Chen W, Kim JH, Zhang D, Lee KH, Cangelosi GA, Soelberg SD, Furlong CE, Chung JH, Shen AQ (2013) Microfluidic one-step synthesis of alginate microspheres immobilized with antibodies. J R Soc Interface 10(88):20130566PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen PY, Yang KC, Wu CC, Yu JH, Lin FH, Sun JS (2014) Fabrication of large perfusable macroporous cell-laden hydrogel scaffolds using microbial transglutaminase. Acta Biomater 10(2):912–920PubMedCrossRefGoogle Scholar
  26. Cheng TY, Chen MH, Chang WH, Huang MY, Wang TW (2013) Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 34(8):2005–2016PubMedCrossRefGoogle Scholar
  27. Choi CH, Jung JH, Rhee YW, Kim DP, Shim SE, Lee CS (2007) Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 9(6):855–862PubMedCrossRefGoogle Scholar
  28. Choi M, Choi JW, Kim S, Nizamoglu S, Hahn SK, Yun SH (2013) Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat Photonics 7(12):987–994PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chung BG, Lee KH, Khademhosseini A, Lee SH (2012) Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip Miniaturisation Chem Biol 12(1):45–59CrossRefGoogle Scholar
  30. Crouch SP, Kozlowski R, Slater KJ, Fletcher J (1993) The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 160(1):81–88PubMedCrossRefGoogle Scholar
  31. Culver JC, Hoffmann JC, Poché RA, Slater JH, West JL, Dickinson ME (2012) Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv Mater 24(17):2344–2348PubMedPubMedCentralCrossRefGoogle Scholar
  32. Daniele MA, Adams AA, Naciri J, North SH, Ligler FS (2014) Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials 35(6):1845–1856PubMedCrossRefGoogle Scholar
  33. Darnell MC, Sun JY, Mehta M, Johnson C, Arany PR, Suo Z, Mooney DJ (2013) Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34(33):8042–8048PubMedPubMedCentralCrossRefGoogle Scholar
  34. DeForest CA, Anseth KS (2012) Advances in bioactive hydrogels to probe and direct cell fate. Annu Rev Chem Biomol Eng 3:421–444PubMedCrossRefGoogle Scholar
  35. Despang FS, K.; Milan, F.; Meikle, S.; Phillips, G.; Dessi, M.; Santin, M.; Gelionsky, M. (2014) Alginate-based bi-layered hydrogels with embedded cells for the regenerative therapy of osteo-chondral defects. PreSens Appl NoteGoogle Scholar
  36. Dhariwala B, Hunt E, Boland T (2004) Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng 10(9–10):1316–1322PubMedCrossRefGoogle Scholar
  37. Diederichs S, Bohm S, Peterbauer A, Kasper C, Scheper T, van Griensven M (2010) Application of different strain regimes in two-dimensional and three-dimensional adipose tissue-derived stem cell cultures induces osteogenesis: implications for bone tissue engineering. J Biomed Mater Res A 94(3):927–936PubMedGoogle Scholar
  38. Dikovsky D, Bianco-Peled H, Seliktar D (2006) The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. Biomaterials 27(8):1496–1506PubMedCrossRefGoogle Scholar
  39. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351PubMedCrossRefGoogle Scholar
  40. Engelbrecht CJ, Greger K, Reynaud EG, Krzic U, Colombelli J, Stelzer EH (2007) Three-dimensional laser microsurgery in light-sheet based microscopy (SPIM). Opt Express 15(10):6420–6430PubMedCrossRefGoogle Scholar
  41. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689PubMedCrossRefGoogle Scholar
  42. Even-Ram S, Artym V, Yamada KM (2006) Matrix control of stem cell fate. Cell 126(4):645–647PubMedCrossRefGoogle Scholar
  43. Figallo E, Cannizzaro C, Gerecht S, Burdick JA, Langer R, Elvassore N, Vunjak-Novakovic G (2007) Micro-bioreactor array for controlling cellular microenvironments. Lab Chip 7(6):710–719PubMedCrossRefGoogle Scholar
  44. Forte G, Pagliari S, Ebara M, Uto K, Tam JK, Romanazzo S, Escobedo-Lucea C, Romano E, Di Nardo P, Traversa E, Aoyagi T (2012) Substrate stiffness modulates gene expression and phenotype in neonatal cardiomyocytes in vitro. Tissue Eng Part A 18(17–18):1837–1848PubMedCrossRefGoogle Scholar
  45. Friedrich J, Ebner R, Kunz-Schughart LA (2007) Experimental anti-tumor therapy in 3-D: spheroids—old hat or new challenge? Int J Radiat Biol 83(11–12):849–871PubMedCrossRefGoogle Scholar
  46. Girard YK, Wang C, Ravi S, Howell MC, Mallela J, Alibrahim M, Green R, Hellermann G, Mohapatra SS, Mohapatra S (2013) A 3D fibrous scaffold inducing tumoroids: a platform for anticancer drug development. PLoS One 8(10):e75345PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gittard SD, Koroleva A, Nguyen AK, Fadeeva E, Gaidukeviciute A, Schlie-Wolter S, Narayan RJ, Chichkov B (2013) Two-photon polymerization microstructuring in regenerative medicine. Front Biosci (Elite Ed) 5:602–609CrossRefGoogle Scholar
  48. Gonen-Wadmany M, Goldshmid R, Seliktar D (2011) Biological and mechanical implications of PEGylating proteins into hydrogel biomaterials. Biomaterials 32(26):6025–6033PubMedCrossRefGoogle Scholar
  49. Gramlich WM, Kim IL, Burdick JA (2013) Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 34(38):9803–9811PubMedCrossRefGoogle Scholar
  50. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5(1):17–26PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hammer J, Han LH, Tong X, Yang F (2014) A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering. Tissue Eng Part C Methods 20(2):169–176PubMedCrossRefGoogle Scholar
  52. Haraguchi K (2012) Development of soft nanocomposite materials and their applications in cell culture and tissue engineering. J Stem Cells Regen Med 8(1):P2–P11Google Scholar
  53. Haycock JW (2011) 3D cell culture: a review of current approaches and techniques. Methods Mol Biol 695:1–15PubMedCrossRefGoogle Scholar
  54. Heck T, Faccio G, Richter M, Thöny-Meyer L (2013) Enzyme-catalyzed protein cross-linking. Appl Microbiol Biotechnol 97(2):461–475PubMedCrossRefGoogle Scholar
  55. Hern DL, Hubbell JA (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39(2):266–276PubMedCrossRefGoogle Scholar
  56. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007CrossRefGoogle Scholar
  57. Hronik-Tupaj M, Rice WL, Cronin-Golomb M, Kaplan DL, Georgakoudi I (2011) Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields. Biomed Eng Online 10:9PubMedPubMedCentralCrossRefGoogle Scholar
  58. Huang GY, Zhou LH, Zhang QC, Chen YM, Sun W, Xu F, Lu TJ (2011) Microfluidic hydrogels for tissue engineering. Biofabrication 3(1)Google Scholar
  59. Huang G, Zhang X, Xiao Z, Zhang Q, Zhou J, Xu F, Lu TJ (2012) Cell-encapsulating microfluidic hydrogels with enhanced mechanical stability. Soft Matter 8(41):10687–10694CrossRefGoogle Scholar
  60. Hulsart-Billström G, Yuen PK, Marsell R, Hilborn J, Larsson S, Ossipov D (2013) Bisphosphonate-linked hyaluronic acid hydrogel sequesters and enzymatically releases active bone morphogenetic protein-2 for induction of osteogenic differentiation. Biomacromolecules 14(9):3055–3063PubMedCrossRefGoogle Scholar
  61. Hwang NS, Varghese S, Elisseeff J (2008) Controlled differentiation of stem cells. Adv Drug Deliv Rev 60(2):199–214PubMedCrossRefGoogle Scholar
  62. Impellitteri NA, Toepke MW, Lan Levengood SK, Murphy WL (2012) Specific VEGF sequestering and release using peptide-functionalized hydrogel microspheres. Biomaterials 33(12):3475–3484PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jeon O, Alt DS, Linderman SW, Alsberg E (2013) Biochemical and physical signal gradients in hydrogels to control stem cell behavior. Adv Mater 25(44):6366–6372PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jose S, Hughbanks ML, Binder BYK, Ingavle GC, Leach JK (2014) Enhanced trophic factor secretion by mesenchymal stem/stromal cells with glycine-histidine-lysine (GHK)-modified alginate hydrogels. Acta Biomater 10(5):1955–1964PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kahle J (2010) An inexpensive simple-to-use inverted fluorescence microscope: a new tool for cellular analysis. J Lab Autom 15(5):355–361CrossRefGoogle Scholar
  66. Kahle J (2011) Applications of a compact, easy-to-use inverted fluorescence microscope. Life Sci Inst 6:009Google Scholar
  67. Kang A, Park J, Ju J, Jeong GS, Lee SH (2014) Cell encapsulation via microtechnologies. Biomaterials 35(9):2651–2663PubMedCrossRefGoogle Scholar
  68. Karlsson H, Fryknas M, Larsson R, Nygren P (2012) Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system. Exp Cell Res 318(13):1577–1585PubMedCrossRefGoogle Scholar
  69. Kesselman D, Kossover O, Mironi-Harpaz I, Seliktar D (2013) Time-dependent cellular morphogenesis and matrix stiffening in proteolytically responsive hydrogels. Acta Biomater 9(8):7630–7639PubMedCrossRefGoogle Scholar
  70. Khetan S, Burdick JA (2010) Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31(32):8228–8234PubMedCrossRefGoogle Scholar
  71. Kim Y, Lasher CD, Milford LM, Murali TM, Rajagopalan P (2010) A comparative study of genome-wide transcriptional profiles of primary hepatocytes in collagen sandwich and monolayer cultures. Tissue Eng Part C Methods 16(6):1449–1460PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kim C, Chung S, Kim YE, Lee KS, Lee SH, Oh KW, Kang JY (2011) Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid. Lab Chip 11(2):246–252PubMedCrossRefGoogle Scholar
  73. Kim SB, Koo KI, Bae H, Dokmeci MR, Hamilton GA, Bahinski A, Kim SM, Ingber DE, Khademhosseini A (2012) A mini-microscope for in situ monitoring of cells. Lab Chip 12(20):3976–3982PubMedPubMedCentralCrossRefGoogle Scholar
  74. Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68(1):34–45PubMedCrossRefGoogle Scholar
  75. Kloxin AM, Tibbitt MW, Anseth KS (2010) Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat Protoc 5(12):1867–1887PubMedPubMedCentralCrossRefGoogle Scholar
  76. Koroleva A, Gittard S, Schlie S, Deiwick A, Jockenhoevel S, Chichkov B (2012) Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique. Biofabrication 4(1):015001PubMedCrossRefGoogle Scholar
  77. Lam J, Segura T (2013) The modulation of MSC integrin expression by RGD presentation. Biomaterials 34(16):3938–3947PubMedPubMedCentralCrossRefGoogle Scholar
  78. Landers R, Hubner U, Schmelzeisen R, Mulhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23(23):4437–4447PubMedCrossRefGoogle Scholar
  79. Lang R, Stern MM, Smith L, Liu Y, Bharadwaj S, Liu G, Baptista PM, Bergman CR, Soker S, Yoo JJ, Atala A, Zhang Y (2011) Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 32(29):7042–7052PubMedCrossRefGoogle Scholar
  80. Lavrentieva A, Hatlapatka T, Neumann A, Weyand B, Kasper C (2013) Potential for osteogenic and chondrogenic differentiation of MSC. Adv Biochem Eng Biotechnol 129:73–88PubMedGoogle Scholar
  81. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci (Oxford) 37(1):106–126CrossRefGoogle Scholar
  82. Lee HJ, Yu C, Chansakul T, Hwang NS, Varghese S, Yu SM, Elisseeff JH (2008) Enhanced chondrogenesis of mesenchymal stem cells in collagen mimetic peptide-mediated microenvironment. Tissue Eng Part A 14(11):1843–1851PubMedCrossRefGoogle Scholar
  83. Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, Park JK, Yoo SS (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30(8):1587–1595PubMedCrossRefGoogle Scholar
  84. Lee JM, Mhawech-Fauceglia P, Lee N, Parsanian LC, Lin YG, Gayther SA, Lawrenson K (2013) A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Lab Invest 93(5):528–542PubMedCrossRefGoogle Scholar
  85. Lee YB, Jun I, Bak S, Shin YM, Lim YM, Park H, Shin H (2014) Reconstruction of Vascular structure with multicellular components using cell transfer printing methods. Adv Healthc MaterGoogle Scholar
  86. Leicht UV, E.; Wiese, H; Schieker, M. (2014) Hydrogels as cell carriers for tissue engineering. PreSens Application NoteGoogle Scholar
  87. Li RH, Altreuter DH, Gentile FT (1996) Transport characterization of hydrogel matrices for cell encapsulation. Biotechnol Bioeng 50(4):365–373PubMedCrossRefGoogle Scholar
  88. Lian M, Collier CP, Doktycz MJ, Retterer ST (2012) Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator. Biomicrofluidics 6(4):44108PubMedCrossRefGoogle Scholar
  89. Liao SW, Yu TB, Guan Z (2009) De novo design of saccharide-peptide hydrogels as synthetic scaffolds for tailored cell responses. J Am Chem Soc 131(48):17638–17646PubMedCrossRefGoogle Scholar
  90. Liu L, Yuan W, Wang J (2010) Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress. Biomech Model Mechanobiol 9(6):659–670PubMedCrossRefGoogle Scholar
  91. Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC (2010) Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 31(32):8494–8506PubMedCrossRefGoogle Scholar
  92. Lou YR, Kanninen L, Kuisma T, Niklander J, Noon LA, Burks D, Urtti A, Yliperttula M (2014) The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev 23(4):380–392PubMedCrossRefGoogle Scholar
  93. Luca AC, Mersch S, Deenen R, Schmidt S, Messner I, Schafer KL, Baldus SE, Huckenbeck W, Piekorz RP, Knoefel WT, Krieg A, Stoecklein NH (2013) Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One 8(3):e59689PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lücking TH, Sambale F, Beutel S, Scheper T (2014a) 3D-printed individual labware in biosciences by rapid prototyping: a proof of principle. Engineering in Life Sciences:n/a-n/aGoogle Scholar
  95. Lücking TH, Sambale F, Schnaars B, Bulnes-Abundis D, Beutel S, Scheper T (2014b) 3D-printed individual labware in biosciences by rapid prototyping: in vitro biocompatibility and applications for eukaryotic cell cultures. Engineering in Life Sciences:n/a-n/aGoogle Scholar
  96. Luo Y, Shoichet MS (2004) A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 3(4):249–253PubMedCrossRefGoogle Scholar
  97. Luo Y, Akkineni AR, Gelinsky M (2014) Three-dimensional plotting is a versatile rapid prototyping method for the customized manufacturing of complex scaffolds and tissue engineering constructs. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 28(3):279–285PubMedGoogle Scholar
  98. Ma M, Chiu A, Sahay G, Doloff JC, Dholakia N, Thakrar R, Cohen J, Vegas A, Chen D, Bratlie KM, Dang T, York RL, Hollister-Lock J, Weir GC, Anderson DG (2013) Core-shell hydrogel microcapsules for improved islets encapsulation. Adv Healthc Mat 2(5):667–672CrossRefGoogle Scholar
  99. Mahoney MJ, Anseth KS (2006) Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 27(10):2265–2274PubMedCrossRefGoogle Scholar
  100. Manojlovic V, Djonlagic J, Obradovic B, Nedovic V, Bugarski B (2006) Immobilization of cells by electrostatic droplet generation: a model system for potential application in medicine. Int J Nanomedicine 1(2):163–171PubMedPubMedCentralCrossRefGoogle Scholar
  101. Martin-Banderas L, Flores-Mosquera M, Riesco-Chueca P, Rodriguez-Gil A, Cebolla A, Chavez S, Ganan-Calvo AM (2005) Flow focusing: a versatile technology to produce size-controlled and specific-morphology microparticles. Small 1(7):688–692PubMedCrossRefGoogle Scholar
  102. Mazzitelli S, Tosi A, Balestra C, Nastruzzi C, Luca G, Mancuso F, Calafiore R, Calvitti M (2008) Production and characterization of alginate microcapsules produced by a vibrational encapsulation device. J Biomater Appl 23(2):123–145PubMedCrossRefGoogle Scholar
  103. McKinnon DD, Kloxin AM, Anseth KS (2013) Synthetic hydrogel platform for three-dimensional culture of embryonic stem cell-derived motor neurons. Biomater Sci 1(5):460–469CrossRefGoogle Scholar
  104. Mequanint APaK ((2011)) Hydrogel biomaterials. In: (Ed.) PRF (ed) Biomedical Engineering - Frontiers and Challenges.Google Scholar
  105. Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D (2012) Photopolymerization of cell-encapsulating hydrogels: cross-linking efficiency versus cytotoxicity. Acta Biomater 8(5):1838–1848PubMedCrossRefGoogle Scholar
  106. Moeinzadeh S, Barati D, He X, Jabbari E (2012) Gelation characteristics and osteogenic differentiation of stromal cells in inert hydrolytically degradable micellar polyethylene glycol hydrogels. Biomacromolecules 13(7):2073–2086PubMedCrossRefGoogle Scholar
  107. Mosiewicz KA, Kolb L, Van Der Vlies AJ, Martino MM, Lienemann PS, Hubbell JA, Ehrbar M, Lutolf MP (2013) In situ cell manipulation through enzymatic hydrogel photopatterning. Nat Mater 12(11):1072–1078PubMedCrossRefGoogle Scholar
  108. Nemir S, Hayenga HN, West JL (2010) PEGDA hydrogels with patterned elasticity: novel tools for the study of cell response to substrate rigidity. Biotechnol Bioeng 105(3):636–644PubMedCrossRefGoogle Scholar
  109. Nguyen AK, Gittard SD, Koroleva A, Schlie S, Gaidukeviciute A, Chichkov BN, Narayan RJ (2013) Two-photon polymerization of polyethylene glycol diacrylate scaffolds with riboflavin and triethanolamine used as a water-soluble photoinitiator. Regen Med 8(6):725–738PubMedCrossRefGoogle Scholar
  110. Nuttelman CR, Tripodi MC, Anseth KS (2004) In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. J Biomed Mater Res A 68(4):773–782PubMedCrossRefGoogle Scholar
  111. O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267(17):5421–5426PubMedCrossRefGoogle Scholar
  112. Occhetta P, Sadr N, Piraino F, Redaelli A, Moretti M, Rasponi M (2013) Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning. Biofabrication 5(3)Google Scholar
  113. Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845PubMedCrossRefGoogle Scholar
  114. Park SA, Lee SH, Kim W (2011) Fabrication of hydrogel scaffolds using rapid prototyping for soft tissue engineering. Macromol Res 19(7):694–698CrossRefGoogle Scholar
  115. Patterson J, Hubbell JA (2011) SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials 32(5):1301–1310PubMedCrossRefGoogle Scholar
  116. Peng K, Tomatsu I, Van Den Broek B, Cui C, Korobko AV, Van Noort J, Meijer AH, Spaink HP, Kros A (2011) Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter 7(10):4881–4887CrossRefGoogle Scholar
  117. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360CrossRefGoogle Scholar
  118. Plotkin M, Vaibavi SR, Rufaihah AJ, Nithya V, Wang J, Shachaf Y, Kofidis T, Seliktar D (2014) The effect of matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack. Biomaterials 35(5):1429–1438PubMedCrossRefGoogle Scholar
  119. Potier E, Ferreira E, Andriamanalijaona R, Pujol JP, Oudina K, Logeart-Avramoglou D, Petite H (2007) Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone 40(4):1078–1087PubMedCrossRefGoogle Scholar
  120. Prüsse U, Bilancetti L, Bucko M, Bugarski B, Bukowski J, Gemeiner P, Lewinska D, Manojlovic V, Massart B, Nastruzzi C, Nedovic V, Poncelet D, Siebenhaar S, Tobler L, Tosi A, Vikartovska A, Vorlop K (2008) Comparison of different technologies for alginate beads production. Chem Pap 62(4):364–374CrossRefGoogle Scholar
  121. Rahimi N, Swennen G, Verbruggen S, Scibiorek M, Molin DG, Post MJ (2014) Short stimulation of electro-responsive PAA/fibrin hydrogel induces collagen production. Tissue Eng Part C MethodsGoogle Scholar
  122. Rice MA, Sanchez-Adams J, Anseth KS (2006) Exogenously triggered, enzymatic degradation of photopolymerized hydrogels with polycaprolactone subunits: experimental observation and modeling of mass loss behavior. Biomacromolecules 7(6):1968–1975PubMedPubMedCentralCrossRefGoogle Scholar
  123. Rimann M, Graf-Hausner U (2012) Synthetic 3D multicellular systems for drug development. Curr Opin Biotechnol 23(5):803–809PubMedCrossRefGoogle Scholar
  124. Rustad KC, Wong VW, Sorkin M, Glotzbach JP, Major MR, Rajadas J, Longaker MT, Gurtner GC (2012) Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials 33(1):80–90PubMedCrossRefGoogle Scholar
  125. Ryan DM, Nilsson BL (2012) Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering. Polym Chem 3(1):18–33CrossRefGoogle Scholar
  126. Saik JE, Gould DJ, Watkins EM, Dickinson ME, West JL (2011) Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels. Acta Biomater 7(1):133–143PubMedCrossRefGoogle Scholar
  127. Sancho A, Vazquez L, De-Juan-Pardo EM (2014) Effect of cold storage on collagen-based hydrogels for the three-dimensional culture of adipose-derived stem cells. Biofabrication 6(3):035017PubMedCrossRefGoogle Scholar
  128. Schmidt O, Mizrahi J, Elisseeff J, Seliktar D (2006) Immobilized fibrinogen in PEG hydrogels does not improve chondrocyte-mediated matrix deposition in response to mechanical stimulation. Biotechnol Bioeng 95(6):1061–1069PubMedCrossRefGoogle Scholar
  129. Schwinger C, Koch S, Jahnz U, Wittlich P, Rainov NG, Kressler J (2002) High throughput encapsulation of murine fibroblasts in alginate using the JetCutter technology. J Microencapsul 19(3):273–280PubMedCrossRefGoogle Scholar
  130. Seif-Naraghi SB, Horn D, Schup-Magoffin PJ, Christman KL (2012) Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomater 8(10):3695–3703PubMedPubMedCentralCrossRefGoogle Scholar
  131. Seiler C, Gazdhar A, Reyes M, Benneker LM, Geiser T, Siebenrock KA, Gantenbein-Ritter B (2012) Time-lapse microscopy and classification of 2D human mesenchymal stem cells based on cell shape picks up myogenic from osteogenic and adipogenic differentiation. J Tissue Eng Regen MedGoogle Scholar
  132. Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336(6085):1124–1128PubMedCrossRefGoogle Scholar
  133. Shachaf Y, Gonen-Wadmany M, Seliktar D (2010) The biocompatibility of PluronicF127 fibrinogen-based hydrogels. Biomaterials 31(10):2836–2847PubMedCrossRefGoogle Scholar
  134. Sharma R, Barakzai SZ, Taylor SE, Donadeu FX (2013) Epidermal-like architecture obtained from equine keratinocytes in three-dimensional cultures. J Tissue Eng Regen MedGoogle Scholar
  135. Singh RK, Seliktar D, Putnam AJ (2013) Capillary morphogenesis in PEG-collagen hydrogels. Biomaterials 34(37):9331–9340PubMedPubMedCentralCrossRefGoogle Scholar
  136. Stratmann AT, Fecher D, Wangorsch G, Gottlich C, Walles T, Walles H, Dandekar T, Dandekar G, Nietzer SL (2014) Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a boolean in silico model. Mol Oncol 8(2):351–365PubMedCrossRefGoogle Scholar
  137. Sun G, Shen YI, Kusuma S, Fox-Talbot K, Steenbergen CJ, Gerecht S (2011) Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials 32(1):95–106PubMedCrossRefGoogle Scholar
  138. Sutherla RM, Mccredie JA, Inch WR (1971) Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J Natl Cancer Inst 46(1):113Google Scholar
  139. Tam RY, Cooke MJ, Shoichet MS (2012) A covalently modified hydrogel blend of hyaluronan-methyl cellulose with peptides and growth factors influences neural stem/progenitor cell fate. J Mater Chem 22(37):19402–19411CrossRefGoogle Scholar
  140. Taqvi S, Roy K (2006) Influence of scaffold physical properties and stromal cell coculture on hematopoietic differentiation of mouse embryonic stem cells. Biomaterials 27(36):6024–6031PubMedCrossRefGoogle Scholar
  141. Terraciano V, Hwang N, Moroni L, Park HB, Zhang Z, Mizrahi J, Seliktar D, Elisseeff J (2007) Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25(11):2730–2738PubMedCrossRefGoogle Scholar
  142. Thiele J, Ma Y, Bruekers SM, Ma S, Huck WT (2014a) 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv Mater 26(1):125–147PubMedCrossRefGoogle Scholar
  143. Thiele J, Ma Y, Foschepoth D, Hansen MM, Steffen C, Heus HA, Huck WT (2014b) DNA-functionalized hydrogels for confined membrane-free in vitro transcription/translation. Lab Chip 14(15):2651–2656PubMedCrossRefGoogle Scholar
  144. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663PubMedPubMedCentralCrossRefGoogle Scholar
  145. Tibbitt MW, Kloxin AM, Sawicki LA, Anseth KS (2013) Mechanical properties and degradation of chain and step-polymerized photodegradable hydrogels. Macromolecules 46(7):2785–2792PubMedCentralCrossRefGoogle Scholar
  146. Tong X, Yang F (2014) Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties. Biomaterials 35(6):1807–1815PubMedCrossRefGoogle Scholar
  147. Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136(3):473–478PubMedCrossRefGoogle Scholar
  148. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12(5):1387–1408PubMedCrossRefGoogle Scholar
  149. Varghese D, Deshpande M, Xu T, Kesari P, Ohri S, Boland T (2005) Advances in tissue engineering: cell printing. J Thorac Cardiovasc Surg 129(2):470–472PubMedCrossRefGoogle Scholar
  150. Verhulsel M, Vignes M, Descroix S, Malaquin L, Vignjevic DM, Viovy JL (2014) A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials 35(6):1816–1832PubMedCrossRefGoogle Scholar
  151. Walters BD, Stegemann JP (2014) Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater 10(4):1488–1501PubMedCrossRefGoogle Scholar
  152. Wang C, Hao J, Zhang F, Su K, Wang DA (2008) RNA extraction from polysaccharide-based cell-laden hydrogel scaffolds. Anal Biochem 380(2):333–334PubMedCrossRefGoogle Scholar
  153. Wei J, Han J, Zhao Y, Cui Y, Wang B, Xiao Z, Chen B, Dai J (2014) The importance of three-dimensional scaffold structure on stemness maintenance of mouse embryonic stem cells. Biomaterials 35(27):7724–7733PubMedCrossRefGoogle Scholar
  154. Werner M, Biss K, Jerome V, Hilbrig F, Freitag R, Zambrano K, Hubner H, Buchholz R, Mahou R, Wandrey C (2013) Use of the mitochondria toxicity assay for quantifying the viable cell density of microencapsulated jurkat cells. Biotechnol Prog 29(4):986–993PubMedCrossRefGoogle Scholar
  155. West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32(1):241–244CrossRefGoogle Scholar
  156. Yamada M, Tanemura K, Okada S, Iwanami A, Nakamura M, Mizuno H, Ozawa M, Ohyama-Goto R, Kitamura N, Kawano M, Tan-Takeuchi K, Ohtsuka C, Miyawaki A, Takashima A, Ogawa M, Toyama Y, Okano H, Kondo T (2007) Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells 25(3):562–570PubMedCrossRefGoogle Scholar
  157. Yang SF, Leong KF, Du ZH, Chua CK (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8(1):1–11PubMedCrossRefGoogle Scholar
  158. Yeh HY, Liu BH, Sieber M, Hsu SH (2014) Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC Genomics 15(1):10PubMedPubMedCentralCrossRefGoogle Scholar
  159. Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22(12):643–652PubMedCrossRefGoogle Scholar
  160. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60(1):24–34PubMedCrossRefGoogle Scholar
  161. Young JL, Engler AJ (2011) Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32(4):1002–1009PubMedCrossRefGoogle Scholar
  162. Zhang M, Boughton P, Rose B, Lee CS, Hong AM (2013) The use of porous scaffold as a tumor model. Int J Biomater 2013:396056PubMedPubMedCentralCrossRefGoogle Scholar
  163. Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31(17):4639–4656PubMedPubMedCentralCrossRefGoogle Scholar
  164. Zschenker O, Streichert T, Hehlgans S, Cordes N (2012) Genome-wide gene expression analysis in cancer cells reveals 3D growth to affect ECM and processes associated with cell adhesion but not DNA repair. PLoS One 7(4):e34279PubMedPubMedCentralCrossRefGoogle Scholar
  165. Zuidema JM, Pap MM, Jaroch DB, Morrison FA, Gilbert RJ (2011) Fabrication and characterization of tunable polysaccharide hydrogel blends for neural repair. Acta Biomater 7(4):1634–1643PubMedCrossRefGoogle Scholar
  166. Zuidema JM, Rivet CJ, Gilbert RJ, Morrison FA (2014) A protocol for rheological characterization of hydrogels for tissue engineering strategies. J Biomed Mater Res B Appl Biomater 102(5):1063–1073PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ferdinand Ruedinger
    • 1
  • Antonina Lavrentieva
    • 1
    Email author
  • Cornelia Blume
    • 1
  • Iliyana Pepelanova
    • 1
  • Thomas Scheper
    • 1
  1. 1.Institute of Technical ChemistryGottfried Wilhelm Leibniz University HanoverHanoverGermany

Personalised recommendations