Applied Microbiology and Biotechnology

, Volume 99, Issue 5, pp 2305–2312 | Cite as

The concentration-determined and population-specific antimicrobial effects of free nitrous acid on Pseudomonas aeruginosa PAO1

  • Shu-Hong Gao
  • Lu FanEmail author
  • Zhiguo Yuan
  • Philip L BondEmail author
Applied microbial and cell physiology


There is great potential to use free nitrous acid (FNA/HNO2), the protonated form of nitrite, as an antimicrobial agent due to its bacteriostatic and bactericidal effects on a range of microorganisms. Here, we determine the effects of FNA on the opportunistic pathogen Pseudomonas aeruginosa PAO1, a well-studied denitrifier capable of nitrate/nitrite reduction in its anaerobic respiration. It was seen that lower FNA concentrations in the range of 0.1 to 0.2 mg N/L exerted a temporary inhibitory effect on the growth of P. aeruginosa, while respiratory inhibition was not detected until an FNA concentration of 1.0 mg N/L was applied. The FNA concentration of 5.0 mg N/L caused complete cell killing and likely cell lysis. The results suggest concentration-related and multiple antimicrobial effects of FNA. Differential killing of FNA in the P. aeruginosa subpopulations was detected, suggesting intrastrain heterogeneity, and does not support the idea of specific concentrations of FNA bringing about bacteriostatic and bactericidal effects on this species. A delayed recovery from FNA treatment suggested that FNA caused cell damage which required repair prior to the organism showing cell growth. The results of the study provide insight of the inhibitory and biocidal mechanisms of FNA on this important microorganism.


Free nitrous acid Bacteriostatic Bactericidal Pseudomonas aeruginosa PAO1 



We acknowledge the Australian Research Council for funding support of project DP120102832 (Biofilm Control in Wastewater Systems using Free Nitrous Acid—a Renewable Material from Wastewater) and scholarship support for Shu-Hong Gao from the China Scholarship Council. We thank Dr. Beatrice Keller and Jianguang Li, University of Queensland for FIA analysis and Dr. Michael Nefedov, University of Queensland for assistance with the BD FACSAria™ II flow cytometer and data analysis.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Allaker RP, Silva Mendez LS, Hardie JM, Benjamin N (2001) Antimicrobial effect of acidified nitrite on periodontal bacteria. Oral Microbiol Immunol 16:253–256CrossRefPubMedGoogle Scholar
  2. Almeida JS, Júlio SM, Reis MA, Carrondo MJ (1995) Nitrite inhibition of denitrification by Pseudomonas fluorescens. Biotechnol Bioeng 46:194–201CrossRefPubMedGoogle Scholar
  3. Anthonisen AC, Loehr RC, Prakasam TB, Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. Water Pollut Control Fed 48:835–852Google Scholar
  4. Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4:577–587CrossRefPubMedGoogle Scholar
  5. Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188:7344–7353CrossRefPubMedCentralPubMedGoogle Scholar
  6. Cammack R, Joannou CL, Cui XY, Torres Martinez C, Maraj SR, Hughes MN (1999) Nitrite and nitrosyl compounds in food preservation. Biochim Biophys Acta 1411:475–488CrossRefPubMedGoogle Scholar
  7. Codling CE, Maillard JY, Russell AD (2003) Aspects of the antimicrobial mechanisms of action of a polyquaternium and an amidoamine. J Antimicrob Chemother 51:1153–1158CrossRefPubMedGoogle Scholar
  8. Dykhuizen RS, Frazer R, Duncan C, Smith CC, Golden M, Benjamin N, Leifert C (1996) Antimicrobial effect of acidified nitrite on gut pathogens: importance of dietary nitrate in host defense. Antimicrob Agents Chemother 40:1422–1425PubMedCentralPubMedGoogle Scholar
  9. Fang FC (1997) Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest 99:2818–2825CrossRefPubMedCentralPubMedGoogle Scholar
  10. Filiatrault MJ, Picardo KF, Ngai H, Passador L, Iglewski BH (2006) Identification of Pseudomonas aeruginosa genes involved in virulence and anaerobic growth. Infect Immun 74:4237–4245CrossRefPubMedCentralPubMedGoogle Scholar
  11. Firmani MA, Riley LW (2002) Reactive nitrogen intermediates have a bacteriostatic effect on Mycobacterium tuberculosis in vitro. J Clin Microbiol 40:3162–3166CrossRefPubMedCentralPubMedGoogle Scholar
  12. Gefen O, Balaban NQ (2009) The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol Rev 33:704–717CrossRefPubMedGoogle Scholar
  13. Halliwell B, Hu ML, Louie S, Duvall TR, Tarkington BK, Motchnik P, Cross CE (1992) Interaction of nitrogen dioxide with human plasma. Antioxidant depletion and oxidative damage. Febs Lett 313:62–66CrossRefPubMedGoogle Scholar
  14. Harrison JJ, Turner RJ, Ceri H (2005) Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ Microbiol 7:981–994CrossRefPubMedGoogle Scholar
  15. Jiang G, Gutierrez O, Yuan Z (2011) The strong biocidal effect of free nitrous acid on anaerobic sewer biofilms. Water Res 45:3735–3743CrossRefPubMedGoogle Scholar
  16. Juedes MJ, Wogan GN (1996) Peroxynitrite-induced mutation spectra of pSP189 following replication in bacteria and in human cells. Mutat Res 349:51–61CrossRefPubMedGoogle Scholar
  17. Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172–8180CrossRefPubMedCentralPubMedGoogle Scholar
  18. Kevil CG, Kolluru GK, Pattillo CB, Giordano T (2011) Inorganic nitrite therapy: historical perspective and future directions. Free Radic Biol Med 51:576–593CrossRefPubMedGoogle Scholar
  19. Maeda S, Okamura M, Kobayashi M, Omata T (1998) Nitrite-specific active transport system of the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 180:6761–6763PubMedCentralPubMedGoogle Scholar
  20. McElroy KE, Hui JG, Woo JK, Luk AW, Webb JS, Kjelleberg S, Rice SA, Thomas T (2014) Strain-specific parallel evolution drives short-term diversification during Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 111:E1419–1427CrossRefPubMedCentralPubMedGoogle Scholar
  21. Morita Y, Tomida J, Kawamura Y (2014) Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol 4:422PubMedCentralPubMedGoogle Scholar
  22. Nakaki T, Nakayama M, Kato R (1990) Inhibition by nitric oxide and nitric oxide-producing vasodilators of DNA synthesis in vascular smooth muscle cells. Eur J Pharmacol 189:347–353CrossRefPubMedGoogle Scholar
  23. O’Leary V, Solberg M (1976) Effect of sodium nitrite inhibition on intracellular thiol groups and on the activity of certain glycolytic enzymes in Clostridium perfringens. Appl Environ Microbiol 31:208–212PubMedCentralPubMedGoogle Scholar
  24. Park J-W (1993) S-Nitrosylation of sulfhydryl groups in albumin by nitrosating agents. Arch Pharm Res 16:1–5CrossRefGoogle Scholar
  25. Phillips R, Adjei O, Lucas S, Benjamin N, Wansbrough-Jones M (2004) Pilot randomized double-blind trial of treatment of Mycobacterium ulcerans disease (Buruli ulcer) with topical nitrogen oxides. Antimicrob Agents Chemother 48:2866–2870CrossRefPubMedCentralPubMedGoogle Scholar
  26. Pijuan M, Ye L, Yuan ZG (2010) Free nitrous acid inhibition on the aerobic metabolism of poly-phosphate accumulating organisms. Water Res 44:6063–6072CrossRefPubMedGoogle Scholar
  27. Platt MD, Schurr MJ, Sauer K, Vazquez G, Kukavica-Ibrulj I, Potvin E, Levesque RC, Fedynak A, Brinkman FSL, Schurr J, Hwang S-H, Lau GW, Limbach PA, Rowe JJ, Lieberman MA, Barraud N, Webb J, Kjelleberg S, Hunt DF, Hassett DJ (2008) Proteomic, microarray, and signature-tagged mutagenesis analyses of anaerobic Pseudomonas aeruginosa at pH 6.5, likely representing chronic, late-stage cystic fibrosis airway conditions. J Bacteriol 190:2739–2758CrossRefPubMedCentralPubMedGoogle Scholar
  28. Poole RK (2005) Nitric oxide and nitrosative stress tolerance in bacteria. Biochem Soc Trans 33:176–180CrossRefPubMedGoogle Scholar
  29. Rao A, Jump RL, Pultz NJ, Pultz MJ, Donskey CJ (2006) In vitro killing of nosocomial pathogens by acid and acidified nitrite. Antimicrob Agents Chemother 50:3901–3904CrossRefPubMedCentralPubMedGoogle Scholar
  30. Rhoades ER, Orme IM (1997) Susceptibility of a panel of virulent strains of Mycobacterium tuberculosis to reactive nitrogen intermediates. Infect Immun 65:1189–1195PubMedCentralPubMedGoogle Scholar
  31. Rogstam A, Larsson JT, Kjelgaard P, von Wachenfeldt C (2007) Mechanisms of adaptation to nitrosative stress in Bacillus subtilis. J Bacteriol 189:3063–3071CrossRefPubMedCentralPubMedGoogle Scholar
  32. Rowe JJ, Yarbrough JM, Rake JB, Eagon RG (1979) Nitrite inhibition of aerobic bacteria. Curr Microbiol 2:51–54CrossRefGoogle Scholar
  33. Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M, Freeman BA (1994) Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 269:26066–26075PubMedGoogle Scholar
  34. Schurek KN, Breidenstein EB, Hancock RE (2012) Antibiotic discovery and development. Springer, New YorkGoogle Scholar
  35. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964CrossRefPubMedGoogle Scholar
  36. Vadivelu VM, Keller J, Yuan ZG (2006a) Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture. Biotechnol Bioeng 95:830–839CrossRefPubMedGoogle Scholar
  37. Vadivelu VM, Yuan Z, Fux C, Keller J (2006b) The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched Nitrobacter culture. Environ Sci Technol 40:4442–4448CrossRefPubMedGoogle Scholar
  38. Wang Q, Ye L, Jiang G, Jensen P, Batstone D, Yuan Z (2013a) Free nitrous acid (FNA)-based pre-treatment enhances methane production from waste activated sludge. Environ Sci Technol 47:11897–11904CrossRefPubMedGoogle Scholar
  39. Wang Q, Ye L, Jiang G, Yuan Z (2013b) A free nitrous acid (FNA)-based technology for reducing sludge production. Water Res 47:3663–3672CrossRefPubMedGoogle Scholar
  40. Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:4585–4592CrossRefPubMedCentralPubMedGoogle Scholar
  41. Weller R, Price RJ, Ormerod AD, Benjamin N, Leifert C (2001) Antimicrobial effect of acidified nitrite on dermatophyte fungi, Candida and bacterial skin pathogens. J Appl Microbiol 90:648–652CrossRefPubMedGoogle Scholar
  42. Woods LF, Wood JM (1982) A note on the effect of nitrite inhibition on the metabolism of Clostridium botulinum. J Appl Bacteriol 52:109–110CrossRefPubMedGoogle Scholar
  43. Woods LF, Wood JM, Gibbs PA (1981) The involvement of nitric oxide in the inhibition of the phosphoroclastic system in Clostridium sporogenes by sodium nitrite. J Gen Microbiol 125:399–406PubMedGoogle Scholar
  44. Wu Q, Stewart V (1998) NasFED proteins mediate assimilatory nitrate and nitrite transport in Klebsiella oxytoca (pneumoniae) M5al. J Bacteriol 180:1311–1322PubMedCentralPubMedGoogle Scholar
  45. Ye L, Pijuan M, Yuan Z (2013) The effect of free nitrous acid on key anaerobic processes in enhanced biological phosphorus removal systems. Bioresour Technol 130:382–9CrossRefPubMedGoogle Scholar
  46. Ye L, Pijuan M, Yuan ZG (2010) The effect of free nitrous acid on the anabolic and catabolic processes of glycogen accumulating organisms. Water Res 44:2901–2909CrossRefPubMedGoogle Scholar
  47. Zhou Y, Ganda L, Lim M, Yuan ZG, Kjelleberg S, Ng WJ (2010) Free nitrous acid (FNA) inhibition on denitrifying poly-phosphate accumulating organisms (DPAOs). Appl Microbiol Biotechnol 88:359–369CrossRefPubMedGoogle Scholar
  48. Zhou Y, Oehmen A, Lim M, Vadivelu V, Ng WJ (2011) The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Res 45:4672–4682CrossRefPubMedGoogle Scholar
  49. Zhou Y, Pijuan M, Yuan Z (2007) Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by poly-phosphate accumulating organisms. Biotechnol Bioeng 98:903–912CrossRefPubMedGoogle Scholar
  50. Zhou Y, Pijuan M, Zeng RJ, Yuan Z (2008) Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge. Environ Sci Technol 42:8260–8265CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Advanced Water Management CentreThe University of QueenslandBrisbaneAustralia

Personalised recommendations