Skip to main content
Log in

Simultaneous gene inactivation and promoter reporting in cyanobacteria

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Determining spatiotemporal gene expression and analyzing knockout mutant phenotypes have become powerful tools in elucidating the function of genes; however, genetic approaches for simultaneously inactivating a gene and monitoring its expression have not been reported in the literature. In this study, we designed a dual-functional gene knockout vector pZR606 that contains a multiple cloning site (MCS) for inserting the internal fragment of a target gene, with a gfp gene as its transcriptional marker located immediately downstream of the MCS. By using this gene knockout system, we inactivated ava_2679 from Anabaena variabilis ATCC 29413, as well as all2508, alr2887, alr3608, and all4388 from Anabaena sp. strain PCC 7120. The ava_2679 knockout mutant fails to grow diazotrophically. Morphological analysis of ava_2679 knockout mutant after nitrogen step-down revealed defective junctions between heterocysts and adjacent vegetative cells, and the heterocyst was 1.53-fold longer compared to wild-type heterocysts. The alr2887, all4388, and alr3608 mutant colonies turned yellow and showed lack of protracted growth when deprived of fixed nitrogen, consistent with the previous reports that alr2887, all4388, and alr3608 are Fox genes. The all2508 encodes a GTP-binding elongation factor (EF4/LepA), and its knockout mutant exhibited reduced diazotrophic growth. The heterocyst development of all2508 knockout was significantly delayed, and only about 4.0 % of vegetative cells differentiated to heterocysts after nitrogen deprivation for 72 h, decreased 49.6 % compared to wild-type. Thus, we discovered that All2508 may regulate heterocyst development spatiotemporally. Concurrently, the GFP reporter revealed that all five target gene expressions were up-regulated in response to nitrogen deprivation. We demonstrated that the pZR606-based specific gene knockout approach worked effectively for the five selected genes, including four previously identified Fox genes or Fox gene homolog, and a previously unknown function of gene all2508. Thus, gene expression and phenotypic analysis of mutants can be achieved simultaneously by targeted gene inactivation using the pZR606-based system. This combined approach for targeted gene inactivation and its promoter reporting with GFP may be broadly applicable to the study of gene function in other prokaryotic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen MB, Arnon DI (1955) Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiol 30(4):366–372. doi:10.2307/4258938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andersson CR, Tsinoremas NF, Shelton J, Lebedeva NV, Yarrow J, Min H, Golden SS (2000) Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Method Enzymol 305:527–542. doi:10.1016/S0076-6879(00)05511-7

    Article  CAS  Google Scholar 

  • Argueta C, Yuksek K, Summers M (2004) Construction and use of GFP reporter vectors for analysis of cell-type-specific gene expression in Nostoc punctiforme. J Microbiol Methods 59(2):181–188. doi:10.1016/j.mimet.2004.06.009

    Article  CAS  PubMed  Google Scholar 

  • Bauer CC, Haselkorn R (1995) Vectors for determining the differential expression of genes in heterocysts and vegetative cells of Anabaena sp. strain PCC 7120. J Bacteriol 177(11):3332–3336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berendt S, Lehner J, Zhang YV, Rasse TM, Forchhammer K, Maldener I (2012) Cell wall amidase AmiC1 is required for cellular communication and heterocyst development in the cyanobacterium Anabaena PCC 7120 but not for filament integrity. J Bacteriol 194(19):5218–5227. doi:10.1128/JB.00912-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bijlsma JJE, Lie-A-Ling M, Nootenboom IC, Vandenbroucke-Grauls CMJE, Kusters JG (2000) Identification of loci essential for the growth of Helicobacter pylori under acidic conditions. J Infect Dis 182(5):1566–1569. doi:10.1086/315855

    Article  CAS  PubMed  Google Scholar 

  • Biswas I, Gruss A, Ehrlich SD, Maguin E (1993) High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol 175(11):3628–3635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borthakur D, Haselkorn R (1989) Tn5 mutagenesis of Anabaena sp. strain PCC 7120: isolation of a new mutant unable to grow without combined nitrogen. J Bacteriol 171(10):5759–5761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bryant DA (1994) The molecular biology of cyanobacteria. Kluwer, Dordrecht

    Book  Google Scholar 

  • Buikema WJ, Haselkorn R (1991) Isolation and complementation of nitrogen fixation mutants of the cyanobacterium Anabaena sp. Strain PCC 7120. J Bacteriol 173(6):1879–1885

  • Buikema WJ, Haselkorn R (2001) Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions. Proc Natl Acad Sci U S A 98(5):2729–2734. doi:10.1073/pnas.051624898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai YP, Wolk CP (1990) Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol 172(6):3138–3145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caldon CE, Yoong P, March PE (2001) Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol Microbiol 41(2):289–297. doi:10.1046/j.1365-2958.2001.02536.x

    Article  CAS  PubMed  Google Scholar 

  • Carrasco CD, Ramaswamy KS, Ramasubramanian TS, Golden JW (1994) Anabaena xisF gene encodes a developmentally regulated site-specific recombinase. Genes Dev 8(1):74–83. doi:10.1101/gad.8.1.74

  • Casey ES, Grossman A (1994) In vivo and in vitro characterization of the light-regulated cpcB2A2 promoter of Fremyella diplosiphon. J Bacteriol 176(20):6362–6374

  • Chapman JS, Meeks JC (1987) Conditions for mutagenesis of the nitrogen-fixing cyanobacterium Anabaena variabilis. J Gen Microbiol 133(1):111–118. doi:10.1099/00221287-133-1-111

    CAS  Google Scholar 

  • Chen K, Gu L, Xiang X, Lynch M, Zhou R (2012) Identification and characterization of five intramembrane metalloproteases in Anabaena variabilis. J Bacteriol 194(22):6105–6115. doi:10.1128/jb.01366-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clerico EM, Ditty JL, Golden SS (2007) Specialized techniques for site-directed mutagenesis in cyanobacteria. Methods Mol Biol 362:155–171. doi:10.1007/978-1-59745-257-1_11

    Article  CAS  PubMed  Google Scholar 

  • Colca JR, McDonald WG, Waldon DJ, Thomasco LM, Gadwood RC, Lund ET, Cavey GS, Mathews WR, Adams LD, Cecil ET, Pearson JD, Bock JH, Mott JE, Shinabarger DL, Xiong L, Mankin AS (2003) Cross-linking in the living cell locates the site of action of oxazolidinone antibiotics. J Biol Chem 278(24):21972–21979. doi:10.1074/jbc.M302109200

    Article  CAS  PubMed  Google Scholar 

  • Crameri A, Whitehorn EA, Tate E, Stemmer WPC (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotech 14(3):315–319. doi:10.1038/nbt0396-315

    Article  CAS  Google Scholar 

  • Currier TC, Haury JF, Wolk CP (1977) Isolation and preliminary characterization of auxotrophs of a filamentous cyanobacterium. J Bacteriol 129(3):1556–1562

  • Date T, Wickner W (1981) Isolation of the Escherichia coli leader peptidase gene and effects of leader peptidase overproduction in vivo. Proc Natl Acad Sci U S A 78(10):6106–6110. doi:10.1073/pnas.78.10.6106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dibb NJ, Wolfe PB (1986) lep operon proximal gene is not required for growth or secretion by Escherichia coli. J Bacteriol 166(1):83–87

  • Ehira S, Ohmori M (2006) NrrA, a nitrogen-responsive response regulator facilitates heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 59(6):1692–1703. doi:10.1111/j.1365-2958.2006.05049.x

    Article  CAS  PubMed  Google Scholar 

  • Elhai J, Vepritskiy A, Muro-Pastor AM, Flores E, Wolk CP (1997) Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J Bacteriol 179(6):1998–2005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elhai J, Wolk CP (1988) Conjugal transfer of DNA to cyanobacteria. In: Lester Packer ANG (ed) Method Enzymol. vol 167. Academic Press, pp 747–754

  • Ernst A, Black T, Cai YP, Panoff JM, Tiwari DN, Wolk CP (1992) Synthesis of nitrogenase in mutants of the cyanobacterium Anabaena sp strain PCC 7120 affected in heterocyst development or metabolism. J Bacteriol 174(19):6025–6032

  • Fan Q, Huang G, Lechno-Yossef S, Wolk CP, Kaneko T, Tabata S (2005) Clustered genes required for synthesis and deposition of envelope glycolipids in Anabaena sp. strain PCC 7120. Mol Microbiol 58(1):227–243. doi:10.1111/j.1365-2958.2005.04818.x

    Article  CAS  PubMed  Google Scholar 

  • Fan Q, Lechno-Yossef S, Ehira S, Kaneko T, Ohmori M, Sato N, Tabata S, Wolk CP (2006) Signal transduction genes required for heterocyst maturation in Anabaena sp strain PCC 7120. J Bacteriol 188(18):6688–6693. doi:10.1128/JB.01669-05

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferino F, Chauvat F (1989) A promoter-probe vector–host system for the cyanobacterium, Synechocystis PCC 6803. Gene 84(2):257–266. doi:10.1016/0378-1119(89)90499-X

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Pinas F, Leganes F, Wolk CP (2000) Bacterial lux genes as reporters in cyanobacteria. Method Enzymol 305:513–527. doi:10.1016/S0076-6879(00)05510-5

  • Flaherty B, Van Nieuwerburgh F, Head S, Golden J (2011) Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation. BMC Genomics 12(1):332. doi:10.1186/1471-2164-12-332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flores E, Herrero A (2010) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8(1):39–50. doi:10.1038/nrmicro2242

    Article  CAS  PubMed  Google Scholar 

  • Flores E, Herrero A (2014) The cell biology of cyanobacteria. Caister, Norfolk

    Google Scholar 

  • Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D’Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabasi AL, Oltvai ZN, Osterman AL (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185(19):5673–5684. doi:10.1128/JB.185.19.5673-5684.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goebl MG, Petes TD (1986) Most of the yeast genomic sequences are not essential for cell growth and division. Cell 46(7):983–992. doi:10.1016/0092-8674(86)90697-5

    Article  CAS  PubMed  Google Scholar 

  • Golden SS, Haselkorn R (1985) Mutation to herbicide resistance maps within the psbA gene of Anacystis nidulans R2. Science 229(4718):1104–1107. doi:10.1126/science.3929379

  • Golden SS, Sherman LA (1984) Optimal conditions for genetic transformation of the cyanobacterium Anacystis nidulans R2. J Bacteriol 158(1):36–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herdman M, Carr NG (1972) The isolation and characterization of mutant strains of the blue-green alga Anacystis nidulans. J Gen Microbiol 70(2):213–220. doi:10.1099/00221287-70-2-213

    Article  CAS  PubMed  Google Scholar 

  • Herrero AaF E (2008) The cyanobacteria: molecular biology, genomics and evolution. Caister, Norfolk

    Google Scholar 

  • Hu B, Yang G, Zhao W, Zhang Y, Zhao J (2007) MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 63(6):1640–1652. doi:10.1111/j.1365-2958.2007.05618.x

    Article  CAS  PubMed  Google Scholar 

  • Hu N-T, Thiel T, Giddings TH Jr, Wolk CP (1981) New Anabaena and Nostoc cyanophages from sewage settling ponds. Virology 114(1):236–246. doi:10.1016/0042-6822(81)90269-5

    Article  CAS  PubMed  Google Scholar 

  • Iwai M, Katoh H, Katayama M, Ikeuchi M (2004) Improved genetic transformation of the thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1. Plant Cell Physiol 45(2):171–175. doi:10.1093/pcp/pch015

    Article  CAS  PubMed  Google Scholar 

  • Koksharova OA, Wolk CP (2002a) Genetic tools for cyanobacteria. Appl Microbiol Biot 58(2):123–137. doi:10.1007/s00253-001-0864-9

    Article  CAS  Google Scholar 

  • Koksharova OA, Wolk CP (2002b) Novel DNA-binding proteins in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 184(14):3931–3940. doi:10.1128/JB.184.14.3931-3940.2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2(4):a000315. doi:10.1101/cshperspect.a000315

    Article  PubMed Central  PubMed  Google Scholar 

  • Labarre J, Chauvat F, Thuriaux P (1989) Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803. J Bacteriol 171(6):3449–3457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lechno-Yossef S, Fan Q, Wojciuch E, Wolk CP (2011) Identification of ten Anabaena sp genes that under aerobic conditions are required for growth on dinitrogen but not for growth on fixed nitrogen. J Bacteriol 193(14):3482–3489. doi:10.1128/JB.05010-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Chen C, Zhang H, Kaur J, Goldman YE, Cooperman BS (2011) The conserved protein EF4 (LepA) modulates the elongation cycle of protein synthesis. Proc Natl Acad Sci 108(39):16223–16228. doi:10.1073/pnas.1103820108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Igual R, Lechno-Yossef S, Fan Q, Herrero A, Flores E, Wolk CP (2012) A major facilitator superfamily protein, HepP, is involved in formation of the heterocyst envelope polysaccharide in the cyanobacterium Anabaena sp strain PCC 7120. J Bacteriol 194(17):4677–4687. doi:10.1128/JB.00489-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyons EM, Thiel T (1995) Characterization of nifB, nifS, and nifU genes in the cyanobacterium Anabaena  variabilis: NifB is required for the vanadium-dependent nitrogenase. J Bacteriol 177(6):1570–1575

  • Maldener I, Hannus S, Kammerer M (2003) Description of five mutants of the cyanobacterium Anabaena sp strain PCC 7120 affected in heterocyst differentiation and identification of the transposon-tagged genes. FEMS Microbiol Lett 224(2):205–213. doi:10.1016/S0378-1097(03)00444-0

    Article  CAS  PubMed  Google Scholar 

  • March PE (1992) Membrane-associated GTPases in bacteria. Mol Microbiol 6(10):1253–1257. doi:10.1111/j.1365-2958.1992.tb00845.x

    Article  CAS  PubMed  Google Scholar 

  • Margus T, Remm M, Tenson T (2007) Phylogenetic distribution of translational GTPases in bacteria. BMC Genomics 8(1):1–18. doi:10.1186/1471-2164-8-15

    Article  Google Scholar 

  • Mella-Herrera RA, Neunuebel MR, Golden JW (2011) Anabaena sp. strain PCC 7120 ConR contains a LytR-CpsA-Psr domain, is developmentally regulated, and is essential for diazotrophic growth and heterocyst morphogenesis. Microbiology 157:617–626. doi:10.1099/mic. 0.046128-0

  • Moser DP, Zarka D, Kallas T (1993) Characterization of a restriction barrier and electrotransformation of the cyanobacterium Nostoc PCC 7121. Arch Microbiol 160(3):229–237. doi:10.1007/BF00249129

    CAS  PubMed  Google Scholar 

  • Moslavac S, Nicolaisen K, Mirus O, Al Dehni F, Pernil R, Flores E, Maldener I, Schleiff E (2007) A TolC-like protein is required for heterocyst development in Anabaena sp. strain PCC 7120. J Bacteriol 189(21):7887–7895. doi:10.1128/JB.00750-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Onai K, Morishita M, Kaneko T, Tabata S, Ishiura M (2004) Natural transformation of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1: a simple and efficient method for gene transfer. Mol Genet Genomics 271(1):50–59. doi:10.1007/s00438-003-0953-9

    Article  CAS  PubMed  Google Scholar 

  • Pech M, Karim Z, Yamamoto H, Kitakawa M, Qin Y, Nierhaus KH (2011) Elongation factor 4 (EF4/LepA) accelerates protein synthesis at increased Mg2+ concentrations. Proc Natl Acad Sci 108(8):3199–3203. doi:10.1073/pnas.1012994108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prentki P, Binda A, Epstein A (1991) Plasmid vectors for selecting IS1-promoted deletions in cloned DNA: sequence analysis of the omega interposon. Gene 103(1):17–23. doi:10.1016/0378-1119(91)90385-O

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Polacek N, Vesper O, Staub E, Einfeldt E, Wilson DN, Nierhaus KH (2006) The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Cell 127(4):721–733. doi:10.1016/j.cell.2006.09.037

    Article  CAS  PubMed  Google Scholar 

  • Saha SK, Golden JW (2011) Overexpression of pknE blocks heterocyst development in Anabaena sp strain PCC 7120. J Bacteriol 193(10):2619–2629. doi:10.1128/JB.00120-11

  • Scanlan DJ, Bloye SA, Mann NH, Hodgson DA, Carr NG (1990) Construction of lacZ promoter probe vectors for use in Synechococcus: application to the identification of CO2-regulated promoters. Gene 90(1):43–49. doi:10.1016/0378-1119(90)90437-V

    Article  CAS  PubMed  Google Scholar 

  • Shoji S, Janssen BD, Hayes CS, Fredrick K (2010) Translation factor LepA contributes to tellurite resistance in Escherichia coli but plays no apparent role in the fidelity of protein synthesis. Biochimie 92(2):157–163. doi:10.1016/j.biochi.2009.11.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh RN, Tiwari DN (1969) Induction by ultraviolet irradiation of mutation in the blue-green alga Nostoc linckia (Roth) Born. et Flah. Nature 221(5175):62–64. doi:10.1038/221062a0

    Article  CAS  PubMed  Google Scholar 

  • Steitz TA (2008) A structural understanding of the dynamic ribosome machine. Nat Rev Mol Cell Biol 9(3):242–253. doi:10.1038/nrm2352

    Article  CAS  PubMed  Google Scholar 

  • Thiel T, Lyons EM, Erker JC, Ernst A (1995) A second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci U S A 92(20):9358–9362. doi:10.1073/pnas.92.20.9358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thiel T, Pratte B (2001) Effect on heterocyst differentiation of nitrogen fixation in vegetative cells of the cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 183(1):280–286. doi:10.1128/JB.183.1.280-286.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsinoremas NF, Kutach AK, Strayer CA, Golden SS (1994) Efficient gene transfer in Synechococcus sp. strains PCC 7942 and PCC 6301 by interspecies conjugation and chromosomal recombination. J Bacteriol 176(21):6764–6768

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vega-Palas MA, Madueño F, Herrero A, Flores E (1990) Identification and cloning of a regulatory gene for nitrogen assimilation in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 172(2):643–647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vermaas W (1996) Molecular genetics of the cyanobacterium Synechocystis sp. PCC 6803: principles and possible biotechnology applications. J Appl Phycol 8(4–5):263–273. doi:10.1007/Bf02178569

    Article  CAS  Google Scholar 

  • Whitton BA (2012) Ecology of cyanobacteria II: their diversity in space and time. Springer, New York

    Book  Google Scholar 

  • Wolk CP, Cai Y, Cardemil L, Flores E, Hohn B, Murry M, Schmetterer G, Schrautemeier B, Wilson R (1988) Isolation and complementation of mutants of Anabaena sp. strain PCC 7120 unable to grow aerobically on dinitrogen. J Bacteriol 170(3):1239–1244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolk CP, Cai Y, Panoff JM (1991) Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium. Proc Natl Acad Sci U S A 88(12):5355–5359. doi:10.1073/pnas.88.12.5355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X, Wolk CP (2001) Role for hetC in the transition to a nondividing state during heterocyst differentiation in Anabaena sp. J Bacteriol 183(1):393–396. doi:10.1128/JB.183.1.393-396.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon HS, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282(5390):935–938. doi:10.1126/science.282.5390.935

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Qin Y (2013) The paradox of elongation factor 4: highly conserved, yet of no physiological significance. Biochem J 452(2):173–181. doi:10.1042/bj20121792

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Wolk CP (2002) Identification of an akinete marker gene in Anabaena variabilis. J Bacteriol 184(9):2529–2532. doi:10.1128/jb.184.9.2529-2532.2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou RB, Wolk CP (2003) A two-component system mediates developmental regulation of biosynthesis of a heterocyst polysaccharide. J Biol Chem 278(22):19939–19946. doi:10.1074/jbc.M300577200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Volker Brözel for his resourceful advice and his critical reading of the manuscript. We also thank Dr. C. Peter Wolk at the Michigan State University for donation of mutant FQ1062, pRL443, and pRL623. We acknowledge use of the South Dakota State University Functional Genomics Core Facility. This work was partially supported by the National Science Foundation Grant CBET1133951 (to R.Z.), Department of Transportation–the North Central Regional Sun Grant No. DTOS59-07-G-00054, NASA Grant No. NNX11AM03A, and by the South Dakota Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruanbao Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Xu, X., Gu, L. et al. Simultaneous gene inactivation and promoter reporting in cyanobacteria. Appl Microbiol Biotechnol 99, 1779–1793 (2015). https://doi.org/10.1007/s00253-014-6209-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6209-2

Keywords

Navigation