Applied Microbiology and Biotechnology

, Volume 98, Issue 24, pp 9967–9981 | Cite as

Leaching of the plasticizer di(2-ethylhexyl)phthalate (DEHP) from plastic containers and the question of human exposure

  • Hanno C. Erythropel
  • Milan Maric
  • Jim A. Nicell
  • Richard L. Leask
  • Viviane Yargeau


Di(2-ethylhexyl)phthalate (DEHP) is a widely used plasticizer to render poly(vinyl chloride) (PVC) soft and malleable. Plasticized PVC is used in hospital equipment, food wrapping, and numerous other commercial and industrial products. Unfortunately, plasticizers can migrate within the material and leach out of it over time, ending up in the environment and, frequently, the human body. DEHP has come under increased scrutiny as its breakdown products are believed to be endocrine disruptors and more toxic than DEHP itself. DEHP and its breakdown products have been identified as ubiquitous environmental contaminants, and daily human exposure is estimated to be in the microgram per kilogram level. The objective of this review is to summarize and comment on published sources of DEHP exposure and to give an overview of its environmental fate. Exposure through bottled water was examined specifically, as this concern is raised frequently, yet only little exposure to DEHP occurs through bottled water, and DEHP exposure is unlikely to stem from the packaging material itself. Packaged food was also examined and showed higher levels of DEHP contamination compared to bottled water. Exposure to DEHP also occurs in hospital environments, where DEHP leaches directly into liquids that passed through PVC/DEHP tubing and equipment. The latter exposure is at considerably higher levels compared to food and bottled water, specifically putting patients with chronic illnesses at risk. Overall, levels of DEHP in food and bottled water were below current tolerable daily intake (TDI) values. However, our understanding of the risks of DEHP exposure is still evolving. Given the prevalence of DEHP in our atmosphere and environment, and the uncertainty revolving around it, the precautionary principle would suggest its phaseout and replacement. Increased efforts to develop viable replacement compounds, which necessarily includes rigorous leaching, toxicity, and impact assessment studies, are needed before alternative plasticizers can be adopted as viable replacements.


DEHP Phthalate Plasticizer Leaching Human exposure Environmental contamination 



This work was supported by the Canadian Institute of Health Research, CIHR (IHDCYH - Institute of Human Development, Child and Youth Health, RHF-100626), and the Fonds de recherche Québec – Nature et technologies, FRQNT (MELS PBEEE V1).


  1. AgPU (2006) Arbeitsgemeinschaft PVC & Umwelt e. V.—Plasticizers market data. Accessed June 12, 2014
  2. Akingbemi BT, Ge RS, Klinefelter GR, Zirkin BR, Hardy MP (2004) Phthalate-induced Leydig cell hyperplasia is associated with multiple endocrine disturbances. Proc Natl Acad Sci U S A 101(3):775–780. doi: 10.1073/pnas.0305977101 PubMedCentralPubMedGoogle Scholar
  3. Akingbemi BT, Youker RT, Sottas CM, Ge RS, Katz E, Klinefelter GR, Zirkin BR, Hardy MP (2001) Modulation of rat Leydig cell steroidogenic function by di(2-ethylhexyl)phthalate. Biol Reprod 65(4):1252–1259. doi: 10.1095/biolreprod65.4.1252 PubMedGoogle Scholar
  4. Al-Saleh I, Shinwari N, Alsabbaheen A (2011) Phthalates residues in plastic bottled waters. J Toxic Sci 36(4):469–478. doi: 10.2131/jts.36.469 Google Scholar
  5. Amir S, Hafidi M, Merlina G, Hamdi H, Jouraiphy A, El Gharous M, Revel JC (2005) Fate of phthalic acid esters during composting of both lagooning and activated sludges. Process Biochem 40(6):2183–2190. doi: 10.1016/j.procbio.2004.08.012 Google Scholar
  6. ATSDR (2002) Agency for Toxic Substances and Disease Registry: Toxicological profile for di(2-ethylhexyl)phthalate (DEHP). U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA. Accessed June 13, 2014.
  7. Baek JH, Gu MB, Sang BI, Kwack SJ, Kim KB, Lee BM (2009) Risk reduction of adverse effects due to di-(2-ethylhexyl) phthalate (DEHP) by utilizing microbial degradation. J Toxicol Env Heal A 72(21–22):1388–1394. doi: 10.1080/15287390903212733 Google Scholar
  8. Bagel S, Dessaigne B, Bourdeaux D, Boyer A, Bouteloup C, Bazin JE, Chopineau J, Sautou V (2011) Influence of lipid type on bis (2-ethylhexyl)phthalate (DEHP) leaching from infusion line sets in parenteral nutrition. J Parent Parenter Enter Nutr 35(6):770–775. doi: 10.1177/0148607111414021 Google Scholar
  9. Ball GL, McLellan CJ, Bhat VS (2011) Toxicological review and oral risk assessment of terephthalic acid (TPA) and its esters: a category approach. Crit Rev in Toxic 42(1):28–67. doi: 10.3109/10408444.2011.623149 Google Scholar
  10. Barnabe S, Beauchesne I, Cooper DG, Nicell JA (2008) Plasticizers and their degradation products in the process streams of a large urban physicochemical sewage treatment plant. Water Res 42(1–2):153–162. doi: 10.1016/j.watres.2007.07.043 PubMedGoogle Scholar
  11. Bauer MJ, Herrmann R (1997) Estimation of the environmental contamination by phthalic acid esters leaching from household wastes. Sci Total Environ 208(1–2):49–57. doi: 10.1016/S0048-9697(97)00272-6 PubMedGoogle Scholar
  12. Beauchesne I, Barnabe S, Cooper DG, Nicell JA (2008) Plasticizers and related toxic degradation products in wastewater sludges. Water Sci Technol 57(3):367–374. doi: 10.2166/Wst.2008.001 PubMedGoogle Scholar
  13. Becker K, Seiwert M, Angerer J, Heger W, Koch HM, Nagorka R, Rosskamp E, Schluter C, Seifert B, Ullrich D (2004) DEHP metabolites in urine of children and DEHP in house dust. Int J Hyg Environ Heal 207(5):409–417. doi: 10.1078/1438-4639-00309 Google Scholar
  14. Berge A, Cladiere M, Gasperi J, Coursimault A, Tassin B, Moilleron R (2013) Meta-analysis of environmental contamination by phthalates. Environ Sci Pollut R 20(11):8057–8076. doi: 10.1007/s11356-013-1982-5 Google Scholar
  15. Beverage Marketing Corporation (2011) Bottled water 2011: the recovery continues—U.S. and International Developments and Statistics. p 12–21. Accessed June 13, 2014
  16. BfR Stellungnahme 10/2005 (2005) German Federal Institute for Risk Assessment: Übergang von Weichmachern aus Schraubdeckel-Dichtmassen in Lebensmittel, 14.02.2005. Berlin. Accessed June 13, 2014
  17. BfR Stellungnahme 25/2007 (2007) German Federal Institute for Risk Assessment: Übergang von Weichmachern aus Twist-off-Verschlüssen in Lebensmittel, 20.07.2007. Berlin. Accessed June 13, 2014
  18. Björklund K, Cousins AP, Strömvall A-M, Malmqvist P-A (2009) Phthalates and nonylphenols in urban runoff: occurrence, distribution and area emission factors. Sci Total Environ 407(16):4665–4672. doi: 10.1016/j.scitotenv.2009.04.040 PubMedGoogle Scholar
  19. Blass CR (2001) The role of poly(vinyl chloride) in healthcare. Rapra Technology, Shawsbury, UKGoogle Scholar
  20. Bošnir J, Puntarić D, Galić A, Škes I, Dijanić T, Klarić M, Grgić M, Čurković M, Šmit Z (2007) Migration of phthalates from plastic containers into soft drinks and mineral water. Food Techn Biotech 45(1):91–95Google Scholar
  21. Buchta C, Bittner C, Heinzl H, Hocker P, Macher M, Mayerhofer M, Schmid R, Seger C, Dettke M (2005) Transfusion-related exposure to the plasticizer di (2-ethylhexyl) phthalate in patients receiving platelet pheresis concentrates. Transition Met Chem 45(5):798–802. doi: 10.1111/j.1537-2995.2005.04380.x Google Scholar
  22. Butte W, Heinzow B (2002) Pollutants in house dust as indicators of indoor contamination. Rev Environ Contam Toxicol 175:1–46PubMedGoogle Scholar
  23. Butte W, Hoffmann W, Hostrup O, Schmidt A, Walker G (2001) Endocrine disrupting chemicals in house dust: results of a representative monitoring. Gefahrst Reinhalt Luft 61 (1–2):19–23. doi:Google Scholar
  24. Cao XL (2008) Determination of phthalates and adipate in bottled water by headspace solid-phase microextraction and gas chromatography/mass spectrometry. J Chromatogr, A 1178(1–2):231–238. doi: 10.1016/j.chroma.2007.11.095 Google Scholar
  25. Cao XL (2010) Phthalate esters in foods: sources, occurrence, and analytical methods. Compr Rev Food Sci F 9(1):21–43. doi: 10.1111/j.1541-4337.2009.00093.x Google Scholar
  26. Carrillo JD, Salazar C, Moreta C, Tena MT (2007) Determination of phthalates in wine by headspace solid-phase microextraction followed by gas chromatography–mass spectrometry: fibre comparison and selection. J Chromatogr, A 1164(1–2):248–261. doi: 10.1016/j.chroma.2007.06.059 Google Scholar
  27. Cartwright CD, Thompson IP, Burns RG (2000) Degradation and impact of phthalate plasticizers on soil microbial communities. Environ Toxicol Chem 19(5):1253–1261. doi: 10.1002/etc.5620190506 Google Scholar
  28. Casajuana N, Lacorte S (2003) Presence and release of phthalic esters and other endocrine disrupting compounds in drinking water. Chromatographia 57(9–10):649–655. doi: 10.1007/Bf02491744 Google Scholar
  29. Chang BV, Liao CS, Yuan SY (2005) Anaerobic degradation of diethyl phthalate, di-n-butyl phthalate, and di-(2-ethylhexyl) phthalate from river sediment in Taiwan. Chemosphere 58(11):1601–1607. doi: 10.1016/j.chemosphere.2004.11.031 PubMedGoogle Scholar
  30. Cole RH, Frederick RE, Healy RP, Rolan RG (1984) Preliminary findings of the priority pollutant monitoring project of the Nationwide Urban Runoff Program. J Water Pollut Control Fed 56(7):898–908. doi: 10.2307/25042368 Google Scholar
  31. CPSIA (2008) United States Consumer Product Safety Improvement Act of 2008, Section 108. Washington. Accessed June 13, 2014
  32. Cui L, Dai G, Xu L, Wang S, Song L, Zhao R, Xiao H, Zhou J, Wang X (2004) Effect of oral administration of terephthalic acid on testicular functions of rats. Toxicol Res 201(1–3):59–66. doi: 10.1016/j.tox.2004.03.024 Google Scholar
  33. Dargnat C (2008) Sources, Transfert et Devenir des Phthalates sur le Bassin versant de la Seine. Caractérisation des Dangers pour l'Environnement et les Écosystèmes. Dissertation, Université Paris VI - Pierre et Marie CurieGoogle Scholar
  34. Del Carlo M, Pepe A, Sacchetti G, Compagnone D, Mastrocola D, Cichelli A (2008) Determination of phthalate esters in wine using solid-phase extraction and gas chromatography–mass spectrometry. Food Chem 111(3):771–777. doi: 10.1016/j.foodchem.2008.04.065 Google Scholar
  35. Demore B, Vigneron J, Perrin A, Hoffman MA, Hoffman M (2002) Leaching of diethylhexyl phthalate from polyvinyl chloride bags into intravenous etoposide solution. J Clin Pharm Ther 27(2):139–142. doi: 10.1046/j.1365-2710.2002.00395.x PubMedGoogle Scholar
  36. Diana A, Dimitra V (2011) Alkylphenols and phthalates in bottled waters. J Hazard Mater 185(1):281–286. doi: 10.1016/j.jhazmat.2011.09.031 Google Scholar
  37. EFSA (2005) European Food Safety Authority: Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the Commission related to bis(2-ethylhexyl)phthalate (DEHP) for use in food contact materials—243. Question No. EFSA-Q-2003-191. The EFSA Journal 3 (9) doi: 10.2903/j.efsa.2005.243Google Scholar
  38. Ejlertsson J, Meyerson U, Svensson BH (1996) Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions. Biodegrad 7(4):345–352. doi: 10.1007/BF00115748 Google Scholar
  39. Engelhardt G, Tillmanns G, Wallnöfer PR, Hutzinger O (1977) Biodegradation of di-iso-butyl phthalate and related dialkyl phthalates by Penicillium lilacinum. Chemosphere 6(6):347–354. doi: 10.1016/0045-6535(77)90099-6 Google Scholar
  40. Erythropel HC, Dodd P, Leask RL, Maric M, Cooper DG (2013) Designing green plasticizers: influence of alkyl chain length on biodegradation and plasticization properties of succinate based plasticizers. Chemosphere 91(3):358–65. doi: 10.1016/j.chemosphere.2012.11.061 PubMedGoogle Scholar
  41. Erythropel HC, Maric M, Cooper DG (2012) Designing green plasticizers: influence of molecular geometry on biodegradation and plasticization properties. Chemosphere 86(8):759–66. doi: 10.1016/j.chemosphere.2011.10.054 PubMedGoogle Scholar
  42. EU (2008) European Commision, Institute for Health and Consumer Protection : EUR 23384 EN/2 Summary risk assessment report on bis(2-ethylhexyl)phthalate (DEHP). vol 80. Luxembourg. Accessed June 13, 2014
  43. EU (2005) Directive 2005/84/EC of the European Parliament and of the council: phthalate-containing soft PVC toys and childcare articles. Brussels, Belgium. = CELEX:32005L0084. Accessed June 13, 2014
  44. Fan J, Traore K, Li W, Amri H, Huang H, Wu C, Chen H, Zirkin B, Papadopoulos V (2010) Molecular mechanisms mediating the effect of mono-(2-ethylhexyl) phthalate on hormone-stimulated steroidogenesis in MA-10 mouse tumor Leydig cells. Endocrinol 151(7):3348–3362. doi: 10.1210/en.2010-0010 Google Scholar
  45. Fankhauser-Noti A, Grob K (2007) Blank problems in trace analysis of diethylhexyl and dibutyl phthalate: investigation of the sources, tips and tricks. Anal Chim Acta 582(2):353–360. doi: 10.1016/j.aca.2006.09.012 PubMedGoogle Scholar
  46. Faouzi MA, Dine T, Gressier B, Kambia K, Luyckx M, Pagniez D, Brunet C, Cazin M, Belabed A, Cazin JC (1999) Exposure of hemodialysis patients to di-2-ethylhexyl phthalate. Int J Pharma 180(1):113–121. doi: 10.1016/S0378-5173(98)00411-6 Google Scholar
  47. FDA (2001) U.S. Food and Drug Administration: Center for Devices and Radiological Health: safety assessment of Di(2-ethylhexyl)phthalate (DEHP) released from PVC medical devices. p.43. Rockville, MD. Accessed June 13, 2014
  48. Firlotte N, Cooper DG, Maric M, Nicell JA (2009) Characterization of 1,5-pentanediol dibenzoate as a potential “green” plasticizer for poly(vinyl chloride). J Vinyl Addit Tech 15(2):99–107. doi: 10.1002/Vnl.20181 Google Scholar
  49. Foster PMD, Mylchreest E, Gaido KW, Sar M (2001) Effects of phthalate esters on the developing reproductive tract of male rats. Hum Reprod Update 7 (3):231–235. doi: 0.1111/j.1600-0463.2001.tb05776.xGoogle Scholar
  50. Fromme H, Gruber L, Schlummer M, Wolz G, Böhmer S, Angerer J, Mayer R, Liebl B, Bolte G (2007) Intake of phthalates and di(2-ethylhexyl)adipate: results of the Integrated Exposure Assessment Survey based on duplicate diet samples and biomonitoring data. Environ Int 33(8):1012–1020. doi: 10.1016/j.envint.2007.05.006 PubMedGoogle Scholar
  51. Gartshore J, Cooper DG, Nicell JA (2003) Biodegradation of plasticizers by Rhodotorula rubra. Environ Toxicol Chem 22(6):1244–1251. doi: 10.1002/etc.5620220609 PubMedGoogle Scholar
  52. Gazouli M, Yao ZX, Boujrad N, Corton JC, Culty M, Papadopoulos V (2002) Effect of peroxisome proliferators on Leydig cell peripheral-type benzodiazepine receptor gene expression, hormone-stimulated cholesterol transport, and steroidogenesis: role of the peroxisome proliferator-activator receptor alpha. Endocrinol 143(7):2571–83. doi: 10.1210/endo.143.7.8895 Google Scholar
  53. Gochfeld M (2003) Why epidemiology of endocrine disruptors warrants the precautionary principle. Pure Appl Chem 75(11–12):2521–2529. doi: 10.1351/pac200375112521 Google Scholar
  54. Gonzalez-Castro MI, Olea-Serrano MF, Rivas-Velasco AM, Medina-Rivero E, Ordonez-Acevedo LG, De Leon-Rodriguez A (2011) Phthalates and bisphenols migration in Mexican food cans and plastic food containers. B Environ Contam 86(6):627–631. doi: 10.1007/s00128-011-0266-3 Google Scholar
  55. Guart A, Bono-Blay F, Borrell A, Lacorte S (2014) Effect of bottling and storage on the migration of plastic constituents in Spanish bottled waters. Food Chem 156:73–80. doi: 10.1016/j.foodchem.2014.01.075 PubMedGoogle Scholar
  56. Guo Y, Wu Q, Kannan K (2011) Phthalate metabolites in urine from China, and implications for human exposures. Environ Int 37(5):893–898. doi: 10.1016/j.envint.2011.03.005 PubMedGoogle Scholar
  57. Health Canada (1996) Health-based tolerable daily intakes/Concentrations and tumorigenic doses/Concentrations for priority substances. Ottawa. Accessed June 13, 2014
  58. Helm D (2007) Correlation between production amounts of DEHP and daily intake. Sci Total Environ 388(1–3):389–391. doi: 10.1016/j.scitotenv.2007.07.009 PubMedGoogle Scholar
  59. Horn O, Nalli S, Cooper D, Nicell J (2004) Plasticizer metabolites in the environment. Water Res 38(17):3693–3698. doi: 10.1016/j.watres.2004.06.012 PubMedGoogle Scholar
  60. Horowitz B, Stryker MH, Waldman AA, Woods KR, Gass JD, Drago J (1985) Stabilization of red blood cells by the plasticizer, diethylhexylphthalate. Vox Sanguinis 48(3):150–155. doi: 10.1111/j.1423-0410.1985.tb00162.x PubMedGoogle Scholar
  61. Hoshi A, Yanai R, Kuretani K (1968) Toxicity of terephthalic acid. Chem and Pharm B 16(9):1655–1660Google Scholar
  62. HPA (2010) Canada: Hazardous Products Act: phthalates regulations. Ottawa, ON. Accessed June 13, 2014
  63. Inoue K, Kawaguchi M, Yamanaka R, Higuchi T, Ito R, Saito K, Nakazawa H (2005) Evaluation and analysis of exposure levels of di(2-ethylhexyl) phthalate from blood bags. Clin Chim Acta 358(1–2):159–166. doi: 10.1016/j.cccn.2005.02.019 PubMedGoogle Scholar
  64. Jaeger RJ, Rubin RJ (1972) Migration of a phthalate ester plasticizer from polyvinyl chloride blood bags into stored human blood and its localization in human tissues. New Eng J Med 287(22):1114–1118. doi: 10.1056/Nejm197211302872203 PubMedGoogle Scholar
  65. Jonsson S, Ejlertsson J, Svensson BH (2003) Behaviour of mono- and diesters of o-phthalic acid in leachates released during digestion of municipal solid waste under landfill conditions. Adv Environ Res 7(2):429–440. doi: 10.1016/S1093-0191(02)00015-1 Google Scholar
  66. Kastner J, Cooper DG, Maric M, Dodd P, Yargeau V (2012) Aqueous leaching of di-2-ethylhexyl phthalate and “green” plasticizers from poly(vinyl chloride). Sci Total Environ 432:357–364. doi: 10.1016/j.scitotenv.2012.06.014 PubMedGoogle Scholar
  67. Keresztes S, Tatar E, Czegeny Z, Zaray G, Mihucz VG (2013) Study on the leaching of phthalates from polyethylene terephthalate bottles into mineral water. Sci Total Environ 458:451–458. doi: 10.1016/j.scitotenv.2013.04.056 PubMedGoogle Scholar
  68. Klamer HJC, Leonards PEG, Lamoree MH, Villerius LA, Åkerman JE, Bakker JF (2005) A chemical and toxicological profile of Dutch North Sea surface sediments. Chemosphere 58(11):1579–1587. doi: 10.1016/j.chemosphere.2004.11.027 PubMedGoogle Scholar
  69. Koch H, Bolt H, Preuss R, Angerer J (2005) New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol 79(7):367–376. doi: 10.1007/s00204-004-0642-4 PubMedGoogle Scholar
  70. Kriebel D, Tickner J, Epstein P, Lemons J, Levins R, Loechler EL, Quinn M, Rudel R, Schettler T, Stoto M (2001) The precautionary principle in environmental science. Environ Health Perspect 109(9):871–6. doi: 10.1289/ehp.01109871 PubMedCentralPubMedGoogle Scholar
  71. Lanxess AG (2011) LANXESS expands portfolio with bio-based plasticizers. Leverkusen, Germany. Accessed June 13, 2014
  72. Leivadara SV, Nikolaou AD, Lekkas TD (2008) Determination of organic compounds in bottled waters. Food Chem 108(1):277–286. doi: 10.1016/j.foodchem.2007.10.031 Google Scholar
  73. Lertsirisopon R, Soda S, Sei K, Ike M (2009) Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation. J Environ Sci 21(3):285–290. doi: 10.1016/S1001-0742(08)62265-2 Google Scholar
  74. Liang DW, Zhang T, Fang HHP, He JZ (2008) Phthalates biodegradation in the environment. Appl Microbiol Biotechnol 80(2):183–198. doi: 10.1007/s00253-008-1548-5 PubMedGoogle Scholar
  75. Ligocki MP, Leuenberger C, Pankow JF (1985) Trace organic compounds in rain—II. Gas scavenging of neutral organic compounds. Atmos Environ 19(10):1609–1617. doi: 10.1016/0004-6981(85)90213-6 Google Scholar
  76. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641. doi: 10.1016/j.scitotenv.2013.12.065 PubMedGoogle Scholar
  77. Markarian J (2010) New plasticizers offer non-ortho-phthalate alternatives. = 4608&q = hexamoll%20dinch. Accessed June 13, 2014
  78. Martine B, Marie-Jeanne T, Cendrine D, Fabrice A, Marc C (2013) Assessment of adult human exposure to phthalate esters in the urban centre of Paris (France). B Environ Contam Tox 90(1):91–96. doi: 10.1007/s00128-012-0859-5 Google Scholar
  79. Martinez-Arguelles DB, Campioli E, Culty M, Zirkin BR, Papadopoulos V (2013) Fetal origin of endocrine dysfunction in the adult: the phthalate model. J Steroid Biochem Mol Biol 137:5–17. doi: 10.1016/j.jsbmb.2013.01.007 PubMedGoogle Scholar
  80. Monfort N, Ventura R, Balcells G, Segura J (2012) Determination of five di-(2-ethylhexyl)phthalate metabolites in urine by UPLC–MS/MS, markers of blood transfusion misuse in sports. J Chromatogr B 908(0):113–121. doi: 10.1016/j.jchromb.2012.09.030
  81. Monfort N, Ventura R, Latorre A, Belalcazar V, López M, Segura J (2010) Urinary di-(2-ethylhexyl)phthalate metabolites in athletes as screening measure for illicit blood doping: a comparison study with patients receiving blood transfusion. Transfusion 50(1):145–149. doi: 10.1111/j.1537-2995.2009.02352.x
  82. Montuori P, Jover E, Morgantini M, Bayona JM, Triassi M (2008) Assessing human exposure to phthalic acid and phthalate esters from mineral water stored in polyethylene terephthalate and glass bottles. Food Addit Contam A 25(4):511–518. doi: 10.1080/02652030701551800 Google Scholar
  83. Murphy J (2001) The additives for plastics handbook, 2nd edn. Elsevier, New YorkGoogle Scholar
  84. Nalli S, Cooper DG, Nicell JA (2002) Biodegradation of plasticizers by Rhodococcus rhodochrous. Biodegrad 13(5):343–352. doi: 10.1023/A:1022313810852 Google Scholar
  85. Nalli S, Cooper DG, Nicell JA (2006a) Interaction of metabolites with R. rhodochrous during the biodegradation of di-ester plasticizers. Chemosphere 65(9):1510–1517. doi: 10.1016/j.chemosphere.2006.04.010 PubMedGoogle Scholar
  86. Nalli S, Cooper DG, Nicell JA (2006b) Metabolites from the biodegradation of di-ester plasticizers by Rhodococcus rhodochrous. Sci Total Environ 366(1):286–294. doi: 10.1016/j.scitotenv.2005.06.020 PubMedGoogle Scholar
  87. Nalli S, Horn OJ, Grochowalski AR, Cooper DG, Nicell JA (2006c) Origin of 2-ethylhexanol as a VOC. Environ Pollut 140(1):181–185. doi: 10.1016/j.envpol.2005.06.018 PubMedGoogle Scholar
  88. Olivieri A, Degenhardt OS, McDonald GR, Narang D, Paulsen IM, Kozuska JL, Holt A (2012) On the disruption of biochemical and biological assays by chemicals leaching from disposable laboratory plasticware. Can J Physiol Pharm 90(6):697–703. doi: 10.1139/Y2012-049 Google Scholar
  89. Pant N, Shukla M, Patel DK, Shukla Y, Mathur N, Gupta YK, Saxena DK (2008) Correlation of phthalate exposures with semen quality. Toxicol Appl Pharmacol 231(1):112–116. doi: 10.1016/j.taap.2008.04.001 PubMedGoogle Scholar
  90. Peck CC, Odom DG, Friedman HI, Albro PW, Hass JR, Brady JT, Jess DA (1979) Di-2-ethylhexyl phthalate (DEHP) and mono-2-ethylhexyl phthalate (MEHP) accumulation in whole blood and red cell concentrates. Transition Met Chem 19(2):137–146. doi: 10.1046/j.1537-2995.1979.19279160282.x Google Scholar
  91. PEMRG (2013) Plastics Europe Market Research Group: plastics—the facts 2013. p.12. Brussels, Belgium. Accessed June 13, 2014
  92. Piche CD, Sauvageau D, Vanlian M, Erythropel HC, Robaire B, Leask RL (2012) Effects of di-(2-ethylhexyl) phthalate and four of its metabolites on steroidogenesis in MA-10 cells. Ecotoxicol Environ Saf 79:108–115. doi: 10.1016/j.ecoenv.2011.12.008 PubMedGoogle Scholar
  93. Pour AK, Cooper DG, Mamer OA, Maric M, Nicell JA (2009a) Mechanisms of biodegradation of dibenzoate plasticizers. Chemosphere 77(2):258–263. doi: 10.1016/j.chemosphere.2009.06.048 Google Scholar
  94. Pour AK, Mamer OA, Cooper DG, Maric M, Nicell JA (2009b) Metabolites from the biodegradation of 1,6-hexanediol dibenzoate, a potential green plasticizer, by Rhodococcus rhodochrous. J Mass Spectrom 44(5):662–671. doi: 10.1002/Jms.1541 PubMedGoogle Scholar
  95. Rahman M, Brazel CS (2004) The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Prog Polym Sci 29(12):1223–1248. doi: 10.1016/j.progpolymsci.2004.10.001 Google Scholar
  96. Richburg JH, Boekelheide K (1996) Mono-(2-ethylhexyl) phthalate rapidly alters both Sertoli cell vimentin filaments and germ cell apoptosis in young rat testes. Toxicol Appl Pharmacol 137(1):42–50. doi: 10.1006/taap.1996.0055 PubMedGoogle Scholar
  97. Rock G, Secours VE, Franklin CA, Chu I, Villeneuve DC (1978) Accumulation of mono-2-ethylhexylphthalate (MEHP) during storage of whole blood and plasma. Transition Met Chem 18(5):553–558. doi: 10.1046/j.1537-2995.1978.18579036383.x Google Scholar
  98. Rose RJ, Priston MJ, Rigby-Jones AE, Sneyd JR (2012) The effect of temperature on di(2-ethylhexyl)phthalate leaching from PVC infusion sets exposed to lipid emulsions. Anaesth 67(5):514–520. doi: 10.1111/j.1365-2044.2011.07006.x Google Scholar
  99. Russo M, Notardonato I, Cinelli G, Avino P (2012) Evaluation of an analytical method for determining phthalate esters in wine samples by solid-phase extraction and gas chromatography coupled with ion-trap mass spectrometer detector. Anal Bioanal Chem 402(3):1373–1381. doi: 10.1007/s00216-011-5551-9 PubMedGoogle Scholar
  100. Sauvageau D, Cooper DG, Nicell JA (2009) Relative rates and mechanisms of biodegradation of diester plasticizers mediated by Rhodococcus rhodochrous. Can J Chem Eng 87(3):499–506. doi: 10.1002/Cjce.20170 Google Scholar
  101. Schmid P, Kohler M, Meierhofer R, Luzi S, Wegelin M (2008) Does the reuse of PET bottles during solar water disinfection pose a health risk due to the migration of plasticisers and other chemicals into the water? Water Res 42(20):5054–5060. doi: 10.1016/j.watres.2008.09.025 PubMedGoogle Scholar
  102. Sears JK, Darby JR (1982) The technology of plasticizers. Wiley, New YorkGoogle Scholar
  103. Shi GX, Cooper DG, Maric M (2011) Poly(epsilon-caprolactone)-based ‘green’ plasticizers for poly(vinyl choride). Polym Degrad Stabil 96(9):1639–1647. doi: 10.1016/j.polymdegradstab.2011.06.007 Google Scholar
  104. Sørensen LK (2006) Determination of phthalates in milk and milk products by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 20(7):1135–1143. doi: 10.1002/rcm.2425 PubMedGoogle Scholar
  105. Srivastava A, Sharma V, Tripathi R, Kumar R, Patel D, Mathur P (2010) Occurrence of phthalic acid esters in Gomti river sediment, India. Environ Monit Assess 169(1–4):397–406. doi: 10.1007/s10661-009-1182-4 PubMedGoogle Scholar
  106. Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35(4):667–749. doi: 10.1016/S0045-6535(97)00195-1 Google Scholar
  107. Stevens MP (1999) Polymer chemistry: an introduction, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  108. Stewart M, Olsen G, Hickey CW, Ferreira B, Jelić A, Petrović M, Barcelo D (2014) A survey of emerging contaminants in the estuarine receiving environment around Auckland, New Zealand. Sci Total Environ 468–469:202–210. doi: 10.1016/j.scitotenv.2013.08.039 PubMedGoogle Scholar
  109. Stuart A, McCallum MM, Fan DM, LeCaptain DJ, Lee CY, Mohanty DK (2010) Poly(vinyl chloride) plasticized with succinate esters: synthesis and characterization. Polym Bull 65(6):589–598. doi: 10.1007/s00289-010-0271-4 Google Scholar
  110. Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, Mao CS, Redmon JB, Ternand CL, Sullivan S, Teague JL, Team SFFR (2005) Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Persp 113(8):1056–1061. doi: 10.1289/Ehp.8100 Google Scholar
  111. Takehisa H, Naoko E, Masahiko S, Katsuhide T, Moriyuki O, Keizoh S, Mutsuko T, Kenji K, Shin'ichiro N, Toshio O (2005) Release behavior of diethylhexyl phthalate from the polyvinyl-chloride tubing used for intravenous administration and the plasticized PVC membrane. Int J Pharmaceut 297(1–2):30–37. doi: 10.1016/j.ijpharm.2005.02.015 Google Scholar
  112. Taylor BF, Curry RW, Corcoran EF (1981) Potential for biodegradation of phthalic acid esters in marine regions. Appl Environ Microbiol 42(4):590–595PubMedCentralPubMedGoogle Scholar
  113. Teil MJ, Blanchard M, Chevreuil M (2006) Atmospheric fate of phthalate esters in an urban area (Paris-France). Sci Total Environ 354(2–3):212–223. doi: 10.1016/j.scitotenv.2004.12.083 PubMedGoogle Scholar
  114. Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Bjorn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Pham HV, Tana TS, Prudente M, Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino Y, Imamura A, Saha M, Takada H (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos T R Soc B 364(1526):2027–2045. doi: 10.1098/rstb.2008.0284 Google Scholar
  115. Thuren A, Larsson P (1990) Phthalate esters in the Swedish atmosphere. Environ Sci Technol 24(4):554–559. doi: 10.1021/es00074a015 Google Scholar
  116. UBA (2012a) Umweltbundesamt. Schriftenreihe Umwelt & Gesundheit: Band I: Phthalat-Belastung der Bevölkerung in Deutschland: Expositionsrelevante Quellen, Aufnahmepfade und Toxikokinetik am Beispiel von DEHP und DINP. Berlin. Accessed 13 Jun 2014
  117. UBA (2012b) Umweltbundesamt. Schriftenreihe Umwelt & Gesundheit: Phthalat-Belastung der Bevölkerung in Deutschland: Expositionsrelevante Quellen, Aufnahmepfade und Toxikokinetik am Beispiel von DEHP und DINP - Kurzfassung & Summary. Berlin. Accessed 13 Jun 2014
  118. UNEP (1992) United Nations Environment Programme: Rio declaration on environment and development. Principle 15. Rio de Janeiro, Brasil, 1992. = 78&ArticleID = 1163. Accessed June 25, 2014
  119. US EPA (2013) Environmental Protection Agency. CFR 21, vol. 2, chapter I—FDA, subchapter B—Food for human consumption, part 165—Beverages, subpart B—Requirements for specific standardized beverages, section 165.110 bottled water. Silver Spring, MD. = 165.110&SearchTerm = phthalate. Accessed June 13, 2014
  120. US EPA (2012) Environmental Protection Agency. Phthalates action plan. Washington, D.C. Accessed June 13, 2014
  121. US EPA (1997) Environmental Protection Agency. Integrated risk information system: di(2-ethylhexyl)phthalate (DEHP) (CASRN 117-81-7). Accessed June 13, 2014
  122. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee D-H, Shioda T, Soto AM, Vom Saal FS, Welshons WV, Zoeller RT, Myers JP (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33(3):378–455. doi: 10.1210/er.2011-1050 PubMedCentralPubMedGoogle Scholar
  123. Veiga M, Bohrer D, Nascimento PC, Ramirez AG, Carvalho LM, Binotto R (2012) Migration of phthalate-based plasticizers from PVC and non-PVC containers and medical devices. J Brazil Chem Soc 23(1):72–77. doi: 10.1590/S0103-50532012000100011 Google Scholar
  124. Velinsky D, Riedel G, Ashley JF, Cornwell J (2011) Historical contamination of the Anacostia River, Washington, D.C. Environ Monit Assess 183(1–4):307–328. doi: 10.1007/s10661-011-1923-z PubMedGoogle Scholar
  125. Vethaak AD, Lahr J, Schrap SM, Belfroid AC, Rijs GBJ, Gerritsen A, de Boer J, Bulder AS, Grinwis GCM, Kuiper RV, Legler J, Murk TAJ, Peijnenburg W, Verhaar HJM, de Voogt P (2005) An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere 59(4):511–524. doi: 10.1016/j.chemosphere.2004.12.053 PubMedGoogle Scholar
  126. Vitali M, Guidotti M, Macilenti G, Cremisini C (1997) Phthalate esters in freshwaters as markers of contamination sources—a site study in Italy. Environ Int 23(3):337–347. doi: 10.1016/S0160-4120(97)00035-4 Google Scholar
  127. Wams TJ (1987) Diethylhexylphthalate as an environmental contaminant—a review. Sci Total Environ 66:1–16. doi: 10.1016/0048-9697(87)90072-6 PubMedGoogle Scholar
  128. Wormuth M, Scheringer M, Vollenweider M, Hungerbuhler K (2006) What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal 26(3):803–824. doi: 10.1111/j.1539-6924.2006.00770.x PubMedGoogle Scholar
  129. Wypych G (2012) Handbook of plasticizers, 2nd edn. ChemTec, Toronto, ONGoogle Scholar
  130. Ye C-W, Gao J, Yang C, Liu X-J, Li X-J, Pan S-Y (2009) Development and application of an SPME/GC method for the determination of trace phthalates in beer using a calix[6]arene fiber. Anal Chim Acta 641(1–2):64–74. doi: 10.1016/j.aca.2009.02.052 PubMedGoogle Scholar
  131. Yuan SY, Liu C, Liao CS, Chang BV (2002) Occurrence and microbial degradation of phthalate esters in Taiwan river sediments. Chemosphere 49(10):1295–1299. doi: 10.1016/S0045-6535(02)00495-2 PubMedGoogle Scholar
  132. Yuwatini E, Hata N, Taguchi S (2006) Behavior of di(2-ethylhexyl)phthalate discharged from domestic waste water into aquatic environment. J Environ Monit 8(1):191–196. doi: 10.1039/B509767c PubMedGoogle Scholar
  133. Zolfaghari M, Drogui P, Seyhi B, Brar SK, Buelna G, Dubé R (2014) Occurrence, fate and effects of di(2-ethylhexyl) phthalate in wastewater treatment plants: a review. Environ Pollut 194:281–293. doi: 10.1016/j.envpol.2014.07.014 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hanno C. Erythropel
    • 1
  • Milan Maric
    • 1
  • Jim A. Nicell
    • 2
  • Richard L. Leask
    • 1
  • Viviane Yargeau
    • 1
  1. 1.Department of Chemical EngineeringMcGill UniversityMontréalCanada
  2. 2.Department of Civil Engineering and Applied MechanicsMcGill UniversityMontréalCanada

Personalised recommendations