Applied Microbiology and Biotechnology

, Volume 99, Issue 3, pp 1427–1433 | Cite as

Promiscuous activity of (S,S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions

  • Toru Jojima
  • Takafumi Igari
  • Yasuhiro Moteki
  • Masako Suda
  • Hideaki Yukawa
  • Masayuki Inui
Applied microbial and cell physiology


Corynebacterium glutamicum can consume glucose to excrete glycerol under oxygen deprivation. Although glycerol synthesis from 1,3-dihydroxyacetone (DHA) has been speculated, no direct evidence has yet been provided in C. glutamicum. Enzymatic and genetic investigations here indicate that the glycerol is largely produced from DHA and, unexpectedly, the reaction is catalyzed by (S,S)-butanediol dehydrogenase (ButA) that inherently catalyzes the interconversion between S-acetoin and (S,S)-2,3-butanediol. Consequently, the following pathway for glycerol biosynthesis in the bacterium emerges: dihydroxyacetone phosphate is dephosphorylated by HdpA to DHA, which is subsequently reduced to glycerol by ButA. This study emphasizes the importance of promiscuous activity of the enzyme in vivo.


Corynebacterium glutamicum Glycerol 2,3-Butanediol dehydrogenase ButA Enzyme promiscuity 



We thank Crispinus A. Omumasaba (RITE) for critical reading of the manuscript.

Supplementary material

253_2014_6170_MOESM1_ESM.pdf (178 kb)
ESM 1 (PDF 178 kb)


  1. Becker J, Klopprogge C, Wittmann C (2008) Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum. Microb Cell Factories 7:8CrossRefGoogle Scholar
  2. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596PubMedCentralPubMedCrossRefGoogle Scholar
  3. Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212PubMedCrossRefGoogle Scholar
  4. Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND (1998) Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254:96–102PubMedCrossRefGoogle Scholar
  5. García-Martínez J, Castrillo M, Avalos J (2014) The gene cutA of Fusarium fujikuroi, encoding a protein of the haloacid dehalogenase family, is involved in osmotic stress and glycerol metabolism. Microbiology 160:26–36PubMedCrossRefGoogle Scholar
  6. Gutknecht R, Beutler R, Garcia-Alles LF, Baumann U, Erni B (2001) The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor. EMBO J 20:2480–2486PubMedCentralPubMedCrossRefGoogle Scholar
  7. Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H (2011) Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation. Appl Environ Microbiol 78:865–875PubMedCrossRefGoogle Scholar
  8. Horbach S, Strohhacker J, Welle R, de Graaf A, Sahm H (1994) Enzymes involved in the formation of glycerol 3-phosphate and the by-products dihydroxyacetone and glycerol in Zymomonas mobilis. FEMS Microbiol Lett 120:37–44CrossRefGoogle Scholar
  9. Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25:231–238PubMedCrossRefGoogle Scholar
  10. Ikeda M, Takeno S (2013) Amino acid production by Corynebacterium glutamicum. In: Yukawa H, Inui M (ed) Corynebacterium glutamicum, vol 23. Springer, Berlin Heidelberg, pp 107–147Google Scholar
  11. Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254PubMedCrossRefGoogle Scholar
  12. Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364PubMedCrossRefGoogle Scholar
  13. Jin RZ, Tang JC, Lin EC (1983) Experimental evolution of a novel pathway for glycerol dissimilation in Escherichia coli. J Mol Evol 19:429–436PubMedCrossRefGoogle Scholar
  14. Jojima T, Igari T, Gunji W, Suda M, Inui M, Yukawa H (2012) Identification of a HAD superfamily phosphatase, HdpA, involved in 1,3-dihydroxyacetone production during sugar catabolism in Corynebacterium glutamicum. FEBS Lett 586:4228–4232PubMedCrossRefGoogle Scholar
  15. Jojima T, Inui M, Yukawa H (2013) Biorefinery applications of Corynebacterium glutamicum. In: Yukawa H, Inui M (ed) Corynebacterium glutamicum, vol 23. Springer, Berlin Heidelberg, pp 149–172Google Scholar
  16. Kiefer P, Heinzle E, Zelder O, Wittmann C (2004) Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl Environ Microbiol 70:229–239PubMedCentralPubMedCrossRefGoogle Scholar
  17. Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784PubMedCentralPubMedCrossRefGoogle Scholar
  18. Lin EC (1976) Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30:535–578PubMedCrossRefGoogle Scholar
  19. Lindner SN, Meiswinkel TM, Panhorst M, Youn JW, Wiefel L, Wendisch VF (2012) Glycerol-3-phosphatase of Corynebacterium glutamicum. J Biotechnol 159:216–224PubMedCrossRefGoogle Scholar
  20. Machielsen R, Uria AR, Kengen SWM, van der Oost J (2006) Production and characterization of a thermostable alcohol dehydrogenase that belongs to the Aldo-keto reductase superfamily. Appl Environ Microbiol 72:233–238PubMedCentralPubMedCrossRefGoogle Scholar
  21. Neish AC, Blackwood AC, Ledingham GA (1945) Dissimilation of glucose by Bacillus subtilis (Ford’s strain). Can J Res 23:290–296PubMedCrossRefGoogle Scholar
  22. Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 16:463–474PubMedCrossRefGoogle Scholar
  23. Otagiri M, Ui S, Takusagawa Y, Ohtsuki T, Kurisu G, Kusunoki M (2010) Structural basis for chiral substrate recognition by two 2,3-butanediol dehydrogenases. FEBS Lett 584:219–223PubMedCrossRefGoogle Scholar
  24. Pepper RE, Costilow RN (1964) Glucose catabolism by Bacillus popilliae and Bacillus lentimorbus. J Bacteriol 87:303PubMedCentralPubMedGoogle Scholar
  25. Raspoet D, Pot B, De Deyn D, De Vos P, Kersters K, De Ley J (1991) Differentiation between 2, 3-butanediol producing Bacillus licheniformis and B. polymyxa strains by fermentation product profiles and whole-cell protein electrophoretic patterns. Syst Appl Microbiol 14:1–7CrossRefGoogle Scholar
  26. Suzuki N, Okai N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2006) High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol 72:3750–3755PubMedCentralPubMedCrossRefGoogle Scholar
  27. Takusagawa Y, Otagiri M, Ui S, Ohtsuki T, Mimura A, Ohkuma M, Kudo T (2001) Purification and characterization of L-2, 3-butanediol dehydrogenase of Brevibacterium saccharolyticum C-1012 expressed in Escherichia coli. Biosci Biotechnol Biochem 65:1876–1878PubMedCrossRefGoogle Scholar
  28. Ui S, Masuda H, Muraki H (1983) Stereopecific and electrophoretic natures of bacterial 2, 3-butanediol dehydrogenases. J Ferment Technol 61:467–471Google Scholar
  29. Ui S, Otagiri M, Mimura A, Dohmae N, Takio K, Ohkuma M, Kudo T (1998) Cloning, expression and nucleotide sequence of the l-2,3-butanediol dehydrogenase gene from Brevibacterium saccharolyticum C-1012. J Ferment Bioeng 86:290–295CrossRefGoogle Scholar
  30. Veiga-DA-Cunha M, Santos H, Van Schaftingen E (1993) Pathway and regulation of erythritol formation in Leuconostoc oenos. J Bacteriol 175:3941–3948PubMedCentralPubMedGoogle Scholar
  31. Viikari L, Berry DR (1988) Carbohydrate metabolism in Zymomonas. Crit Rev Biotechnol 7:237–261CrossRefGoogle Scholar
  32. Wang Y, Tao F, Xu P (2014) Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. J Biol Chem 289:6080–6090PubMedCrossRefGoogle Scholar
  33. Wang ZX, Zhuge J, Fang H, Prior BA (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19:201–223PubMedCrossRefGoogle Scholar
  34. Wittmann C, Kiefer P, Zelder O (2004) Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 70:7277–7287PubMedCentralPubMedCrossRefGoogle Scholar
  35. Wolf A, Krämer R, Morbach S (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134PubMedCrossRefGoogle Scholar
  36. Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertes AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Toru Jojima
    • 1
  • Takafumi Igari
    • 1
  • Yasuhiro Moteki
    • 1
  • Masako Suda
    • 1
  • Hideaki Yukawa
    • 1
  • Masayuki Inui
    • 1
    • 2
  1. 1.Research Institute of Innovative Technology for the EarthKizugawaJapan
  2. 2.Graduate School of Biological SciencesNara Institute of Science and TechnologyIkomaJapan

Personalised recommendations