Applied Microbiology and Biotechnology

, Volume 98, Issue 24, pp 9915–9929 | Cite as

Microbial biofilms: biosurfactants as antibiofilm agents

  • Ibrahim M. Banat
  • Mayri A. Díaz De Rienzo
  • Gerry A. Quinn


Current microbial inhibition strategies based on planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilm communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. All aspects of biofilm measurement, monitoring, dispersal, control, and inhibition are becoming issues of increasing importance. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms in addition to many other advantages. The dispersal properties of biosurfactants have been shown to rival those of conventional inhibitory agents against bacterial and yeast biofilms. This makes them suitable candidates for use in new generations of microbial dispersal agents and for use as adjuvants for existing microbial suppression or eradication strategies. In this review, we explore aspects of biofilm characteristics and examine the contribution of biologically derived surface-active agents (biosurfactants) to the disruption or inhibition of microbial biofilms.


Biosurfactants Biofilm Disruption Antimicrobial Antibiofilm Dispersal agents Adjuvants 


  1. Abdel-Mawgoud AM, Lepine F, Deziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336PubMedCentralPubMedCrossRefGoogle Scholar
  2. Alhede M, Qvortrup K, Liebrechts R, Hoiby N, Givskov M, Bjarnsholt T (2012) Combination of microscopic techniques reveals a comprehensive visual impression of biofilm structure and composition. FEMS Immunol Med Microbiol 65:335–342PubMedCrossRefGoogle Scholar
  3. Araujo JC, Téran FC, Oliveira RA, Nour EA, Montenegro MA, Campos JR, Vazoller RF (2003) Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge. J Electron Microsc (Tokyo) 52:429–433CrossRefGoogle Scholar
  4. Arnold TM, Forrest GN, Messmer KJ (2007) Polymyxin antibiotics for gram-negative infections. Am J Health-Syst Pharm 64:819–826PubMedCrossRefGoogle Scholar
  5. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508PubMedCrossRefGoogle Scholar
  6. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444PubMedCrossRefGoogle Scholar
  7. Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Anton Leeuw 85:1–8CrossRefGoogle Scholar
  8. Benoit MR, Conant CG, Lonescu-Zanetti C, Schwartz M, Martin A (2010) New device for high-throughput viability screening of flow biofilms. App Environ Microbiol 76:4136–4142CrossRefGoogle Scholar
  9. Bevins CL, Zasloff M (1990) Peptides from frog skin. Annu Rev Biochem 59:395–414PubMedCrossRefGoogle Scholar
  10. Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223PubMedCrossRefGoogle Scholar
  11. Brasseur R, Braun N, El Kirat K, Deleu M, Mingeot-Leclercq MP, Dufrene YF (2007) The biologically important surfactin lipopeptide induces nanoripples in supported lipid bilayers. Langmuir 23:9769–9772PubMedCrossRefGoogle Scholar
  12. Bueno J (2014) Anti-biofilm drug susceptibility testing methods: looking for new strategies against resistance mechanism. J Microbial Biochem Technol S3:004. doi: 10.4172/1948-5948.S3-004 Google Scholar
  13. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776PubMedCentralPubMedGoogle Scholar
  14. Chabane NY, Mlouka MB, Alexandre S, Nicol M, Marti S, Pestel-Caron M, Vila J, Dé Jouenne T (2014) Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii. BMC Microbiol 14:62CrossRefGoogle Scholar
  15. Cochis A, Fracchia L, Martinotti MG, Rimondini L (2012) Biosurfactants prevent in vitro Candida albicans biofilm formation on resins and silicon materials for prosthetic devices. Oral Surg Oral Med Oral Pathol Oral Radiol 113:755–761PubMedCrossRefGoogle Scholar
  16. Costa SG, Deziel E, Lepine F (2011) Characterization of rhamnolipid production by Burkholderia glumae. Lett Appl Microbiol 53:620–627PubMedCrossRefGoogle Scholar
  17. Croda-García G, Grosso-Becerra V, Gonzalez-Valdez A, Servín-González L, Soberón-Chávez G (2011) Transcriptional regulation of Pseudomonas aeruginosa rhlR: role of the CRP orthologue Vfr (virulence factor regulator) and quorum-sensing regulators LasR and RhlR. Microbiology 157:2545–2555PubMedCrossRefGoogle Scholar
  18. D'Auria L, Deleu M, Dufour S, Mingeot-Leclercq MP, Tyteca D (2013) Surfactins modulate the lateral organization of fluorescent membrane polar lipids: a new tool to study drug : membrane interaction and assessment of the role of cholesterol and drug acyl chain length. Biochim Biophys Acta 1828:2064–2073PubMedCrossRefGoogle Scholar
  19. Davey ME, Caiazza NC, O'Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036PubMedCentralPubMedCrossRefGoogle Scholar
  20. Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122PubMedCrossRefGoogle Scholar
  21. Decho AW (2013) The EPS matrix as an adaptive bastion for biofilms: introduction to special issue. Int J Mol Sci 14:23297–23300PubMedCentralPubMedCrossRefGoogle Scholar
  22. Deng Y, Lu Z, Bi H, Lu F, Zhang C, Bie X (2011) Isolation and characterization of peptide antibiotics LI-F04 and polymyxin B6 produced by Paenibacillus polymyxa strain JSa-9. Peptides 32:1917–1923PubMedCrossRefGoogle Scholar
  23. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64PubMedCentralPubMedGoogle Scholar
  24. Ding Y, Wang W, Fan M, Tong Z, Kuang R, Jiang W, Ni L (2014) Antimicrobial and anti-biofilm effect of Bac8c on major bacteria associated with dental caries and Streptococcus mutans biofilms. Peptides 52:61–67PubMedCrossRefGoogle Scholar
  25. Domingues MM, Inacio RG, Raimundo JM, Martins M, Castanho MA, Santos NC (2012) Biophysical characterization of polymyxin B interaction with LPS aggregates and membrane model systems. Biopolymers 98:338–344PubMedCrossRefGoogle Scholar
  26. Doring G, Conway SP, Heijerman HGM, Hodson ME, Hoiby N, Smyth A, Touw DJ (2000) Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J 16:749–767PubMedCrossRefGoogle Scholar
  27. Dowd SE, Wolcott RD, Sun Y, McKeehan T, Smith E, Rhoads D (2008) Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial Tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One 3:e3326PubMedCentralPubMedCrossRefGoogle Scholar
  28. Dubern JF, Lugtenberg BJ, Bloemberg GV (2006) The ppuI-rsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvins I and II. J Bacteriol 188:2898–2906PubMedCentralPubMedCrossRefGoogle Scholar
  29. Dusane DH, Nancharaiah YV, Zinjarde SS, Venugopalan VP (2010) Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms. Colloids Surf B Biointerfaces 81:242–248PubMedCrossRefGoogle Scholar
  30. Dusane DH, Pawar VS, Nancharaiah YV, Venugopalan VP, Kumar AR, Zinjarde SS (2011) Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling 27:645–654PubMedCrossRefGoogle Scholar
  31. Dusane DH, Dam S, Nancharaiah YV, Kumar AR, Venugopalan VP, Zinjarde SS (2012) Disruption of Yarrowia lipolytica biofilms by rhamnolipid biosurfactant. Aquat Biosyst 8:17PubMedCentralPubMedCrossRefGoogle Scholar
  32. Epstein AK, Pokroy B, Seminara A, Aizenberg J (2011) Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proc Natl Acad Sci U S A 108:995–1000PubMedCentralPubMedCrossRefGoogle Scholar
  33. Falagas ME, Kasiakou SK (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40:1333–1341PubMedCrossRefGoogle Scholar
  34. Falagas ME, Kasiakou SK (2006) Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care 10:R27PubMedCentralPubMedCrossRefGoogle Scholar
  35. Fracchia L, Cavallo M, Martinotti MG, Banat IM (2012) Biosurfactants and Bioemulsifiers Biomedical and Related Applications – Present Status and Future Potentials. In: Biomedical Science, Engineering and Technology. pp 325-370Google Scholar
  36. Gakhar L, Bartlett JA, Penterman J, Mizrachi D, Singh PK, Mallampalli RK, Ramaswamy S, McCray PB (2010) PLUNC is a novel airway surfactant protein with anti-biofilm activity. PLoS One 5:e9098PubMedCentralPubMedCrossRefGoogle Scholar
  37. Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI (1985) Defensins Natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435PubMedCentralPubMedCrossRefGoogle Scholar
  38. Girard LP, Ceri H, Gibb AP, Olson M, Sepandj F (2010) MIC versus MBEC to determine the antibiotic sensitivity of Staphylococcus aureus in peritoneal dialysis peritonitis. Perit Dial Int 30:652–656PubMedCrossRefGoogle Scholar
  39. Gudina EJ, Rocha V, Teixeira JA, Rodrigues LR (2010) Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Lett Appl Microbiol 50:419–424PubMedCrossRefGoogle Scholar
  40. Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47 T2 NCBIM 40044. Biotechnol Bioeng 81:316–322PubMedCrossRefGoogle Scholar
  41. He J, Ledesma KR, Lam WY, Figueroa DA, Lim TP, Chow DS, Tam VH (2010) Variability of polymyxin B major components in commercial formulations. Int J Antimicrob Agents 35:308–310PubMedCrossRefGoogle Scholar
  42. Irie Y, O'Toole GA, Yuk MH (2005) Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol Lett 250:237–243PubMedCrossRefGoogle Scholar
  43. Janek T, Lukaszewicz M, Rezanka T, Krasowska A (2010) Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour Technol 101:6118–6123PubMedCrossRefGoogle Scholar
  44. Janek T, Lukaszewicz M, Krasowska A (2012) Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 12:24PubMedCentralPubMedCrossRefGoogle Scholar
  45. Jass J, Lappin-Scott HM (1996) The efficacy of antibiotics enhanced by electrical currents against Pseudomonas aeruginosa biofilms. J Antimicrob Chemother 38:987–1000PubMedCrossRefGoogle Scholar
  46. Joshi-Navare K, Prabhune A (2013) A biosurfactant sophorolipid acts in synergy with antibiotics to enhance their efficiency BioMed Res Int; 1-8Google Scholar
  47. Kim KM, Lee JY, Kim CK, Kang JS (2009) Isolation and characterization of surfactin produced by Bacillus polyfermenticus KJS-2. Arch Pharm Res 32:711–715PubMedCrossRefGoogle Scholar
  48. Kiran GS, Sabarathnam B, Selvin J (2010) Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei. FEMS Immunol Med Microbiol 59:432–438PubMedGoogle Scholar
  49. Kotulova D, Slobodnikova L (2010) Susceptibility of staphylococcus aureus biofilms to vancomycin, gentamicin and rifampin. Epidemiol Mikrobiol Imunol 59:80–87PubMedGoogle Scholar
  50. Krasowska A (2010) Biomedical activity of biosurfactants. Postepy Hig Med Dosw) 64:310-313Google Scholar
  51. Krupovic M, Daugelavicius R, Bamford DH (2007) Polymyxin B induces lysis of marine Pseudoalteromonads Antimicrob Agents. Chemotherapy 51:3908–3914Google Scholar
  52. Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GEM, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51:97–113PubMedCrossRefGoogle Scholar
  53. Lehtinen J, Nuutila J, Lilius EM (2004) Green fluorescent protein-propidium iodide (GFP-PI) based assay for flow cytometric measurement of bacterial viability. Cytometry 60A:165–172CrossRefGoogle Scholar
  54. Leis AP, Schlicher S, Franke H, Strathmann M (2005) Optically transparent porous medium for nondestructive studies of microbial biofilm architecture and transport dynamics. Appl Environ Microbiol 71:4801–4808PubMedCentralPubMedCrossRefGoogle Scholar
  55. Liu L, Tan X, Jia A (2012) Relationship between bacterial quorum sensing and biofilm formation–a review. Acta Microbiol Sin 52:271–278Google Scholar
  56. Lourenco A, Machado H, Brito L (2011) Biofilms of Listeria monocytogenes produced at 12 degrees C either in pure culture or in co-culture with Pseudomonas aeruginosa showed reduced susceptibility to sanitizers. J Food Sci 76:M143–M148PubMedCrossRefGoogle Scholar
  57. Lourenco A, Coenye T, Goeres DM, Donelli G, Azevedo AS, Ceri H, Coelho FL, Flemming HC, Juhna T, Lopes SP, Oliveira R, Oliver A, Shirtliff ME, Sousa AM, Stoodley P, Pereira MO, Azevedo NF (2014) Minimum information about a biofilm experiment (MIABiE): standards for reporting experiments and data on sessile microbial communities living at interfaces. Pathogens Dis 70:250–256CrossRefGoogle Scholar
  58. Luna JM, Rufino RD, Sarubbo LA, Rodrigues LR, Teixeira JA, de Campos-Takaki GM (2011) Evaluation antimicrobial and antiadhesive properties of the biosurfactant Lunasan produced by Candida sphaerica UCP 0995. Curr Microbiol 62:1527–1534PubMedCrossRefGoogle Scholar
  59. Mandal SM (2012) A novel hydroxyproline rich glycopeptide from pericarp of Datura stramonium: proficiently eradicate the biofilm of antifungals resistant Candida albicans. Biopolymers 98:332–337PubMedCrossRefGoogle Scholar
  60. Marchant R, Banat IM (2012a) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34:1597–1605PubMedCrossRefGoogle Scholar
  61. Marchant R, Banat IM (2012b) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565PubMedCrossRefGoogle Scholar
  62. McLaughlin RA, Hoogewerf AJ (2006) Interleukin-1beta-induced growth enhancement of Staphylococcus aureus occurs in biofilm but not planktonic cultures. Microb Pathog 41:67–79PubMedCrossRefGoogle Scholar
  63. Milletli Sezgin F, Coban AY, Gunaydin M (2012) Investigation of biofilm formation in Acinetobacter baumannii isolates and their colistin susceptibilities in biofilm. Int J Antimicrob Agents 41:199PubMedCrossRefGoogle Scholar
  64. Mireles JR 2nd, Toguchi A, Harshey RM (2001) Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854PubMedCentralPubMedCrossRefGoogle Scholar
  65. Mukherji R, Prabhune A (2014) Novel glycolipids synthesized using plant essential oils and their application in quorum sensing inhibition and as antibiofilm agents. Sci World J 2014:890709CrossRefGoogle Scholar
  66. Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: Properties, commercial production and application. Curr Sci 94:736–747Google Scholar
  67. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166PubMedCentralPubMedGoogle Scholar
  68. Olson ME, Ceri H, Morck DW, Buret AG, Read RR (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66:86–92PubMedCentralPubMedGoogle Scholar
  69. O'Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp Jan 30(47):2437. doi: 10.3791/2437 Google Scholar
  70. Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189:2531–2539PubMedCentralPubMedCrossRefGoogle Scholar
  71. Pecci Y, Rivardo F, Martinotti MG, Allegrone G (2010) LC/ESI-MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain. J Mass Spectrom 45:772–778PubMedCrossRefGoogle Scholar
  72. Pereira MO, Machado I, Simões M, Vieira MJ (2007) Preventing biofilm formation using surfactants. BiofilmClub©. 167-74. accessed May 2014Google Scholar
  73. Pradhan AK, Pradhan N, Mall G, Panda HT, Sukla LB, Panda PK, Mishra BK (2013) Application of lipopeptide biosurfactant isolated from a halophile: Bacillus tequilensis CH for inhibition of biofilm. Appl Biochem Biotechnol 171:1362–1375PubMedCrossRefGoogle Scholar
  74. Price NP, Rooney AP, Swezey JL, Perry E, Cohan FM (2007) Mass spectrometric analysis of lipopeptides from Bacillus strains isolated from diverse geographical locations. FEMS Microbiol Lett 271:83–89PubMedCrossRefGoogle Scholar
  75. Quinn GA, Maloy AP, McClean S, Carney B, Slater JW (2012) Lipopeptide biosurfactants from Paenibacillus polymyxa inhibit single and mixed species biofilms. Biofouling 28:1151–1166PubMedCrossRefGoogle Scholar
  76. Raza W, Yang X, Wu H, Wang Y, Xu Y, Shen Q (2009) Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f.sp.nevium. Eur J Plant Pathol 125:471–483CrossRefGoogle Scholar
  77. Read RC, Roberts P, Munro N, Rutman A, Hastie A, Shryock T, Hall R, McDonald-Gibson W, Lund V, Taylor G (1992) Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating. J Appl Physiol 72:2271–2277PubMedGoogle Scholar
  78. Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553PubMedCrossRefGoogle Scholar
  79. Rivardo F, Martinotti MG, Turner RJ, Ceri H (2011) Synergistic effect of lipopeptide biosurfactant with antibiotics against Escherichia coli CFT073 biofilm. Int J Antimicrob Agents 37:324–331PubMedCrossRefGoogle Scholar
  80. Rodrigues L, van der Mei HC, Teixeira J, Oliveira R (2004) Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prostheses. Appl Environ Microbiol 70:4408–4410PubMedCentralPubMedCrossRefGoogle Scholar
  81. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006a) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618PubMedCrossRefGoogle Scholar
  82. Rodrigues L, Banat IM, van der Mei HC, Teixeira JA, Oliveira R (2006b) Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J Appl Microbiol 100:470–480PubMedCrossRefGoogle Scholar
  83. Rodrigues L, van der Mei HC, Banat IM, Teixeira J, Oliveira R (2006c) Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A. FEMS Immunol Med Microbiol 46:107–112PubMedCrossRefGoogle Scholar
  84. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2007) Strategies for the prevention of microbial biofilm formation on silicone rubber voice prostheses. J Biomed Mater Res Part B- Appl Biomater 81B:358–370CrossRefGoogle Scholar
  85. Rollet C, Gal L, Guzzo J (2009) Biofilm-detached cells, a transition from a sessile to a planktonic phenotype: a comparative study of adhesion and physiological characteristics in Pseudomonas aeruginosa. FEMS Microbiol Lett 290:135–142PubMedCrossRefGoogle Scholar
  86. Rufino RD, Luna JM, Sarubbo LA, Rodrigues LR, Teixeira JA, Campos-Takaki GM (2011) Antimicrobial and anti-adhesive potential of a biosurfactant Rufisan produced by Candida lipolytica UCP 0988. Colloids Surf B Biointerfaces 84:1–5PubMedCrossRefGoogle Scholar
  87. Samadi N, Abadian N, Ahmadkhaniha R, Amini F, Dalili D, Rastkari N, Safaripour E, Mohseni FA (2012) Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus. Folia Microbiol 57:501–508CrossRefGoogle Scholar
  88. Satpute SK, Banpurkar AG, Dhakephalkar PK, Banat IM, Chopade BA (2009) Methods for investigating biosurfactants and bioemulsifiers: A review. Crit Rev Biotechnol 30:127–144CrossRefGoogle Scholar
  89. Sepandj F, Ceri H, Gibb A, Read R, Olson M (2004) Minimum inhibitory concentration (MIC) versus minimum biofilm eliminating concentration (MBEC) in evaluation of antibiotic sensitivity of gram-negative bacilli causing peritonitis. Perit Dial Int 24:65–67PubMedGoogle Scholar
  90. Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf B Biointerfaces 85:174–181PubMedCrossRefGoogle Scholar
  91. Stepanovic S, Cirkovic I, Ranin L, Svabic-Vlahovic M (2004) Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 38:428–432PubMedCrossRefGoogle Scholar
  92. Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899PubMedCrossRefGoogle Scholar
  93. Stewart CR, Muthye V, Cianciotto NP (2012) Legionella pneumophila Persists within Biofilms Formed by Klebsiella pneumoniae, Flavobacterium sp., and Pseudomonas fluorescens under Dynamic Flow Conditions. PLoS One 7:e50560PubMedCentralPubMedCrossRefGoogle Scholar
  94. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209PubMedCrossRefGoogle Scholar
  95. Tahmourespour A, Salehi R, Kasra Kermanshahi R (2011) Lactobacillus acidophilus-Derived Biosurfactant Effect on GTFB and GTFC Expression Level in Streptococcus mutans Biofilm Cells. Braz J Microbiol 42:330–339PubMedCentralPubMedCrossRefGoogle Scholar
  96. Velraeds MMC, van de Belt-Gritter B, Busscher HJ, Reid G, van der Mei HC (2000) Inhibition of uropathogenic biofilm growth on silicone rubber in human urine by lactobacilli - a teleologic approach. World J Urol 18:422–426PubMedCrossRefGoogle Scholar
  97. Villa F, Cappitelli F (2013) Plant-derived bioactive compounds at sub-lethal concentrations: towards smart biocide-free antibiofilm strategies. Phytochem Rev 12:245–254CrossRefGoogle Scholar
  98. Wicken AJ, Knox KW (1980) Bacterial cell surface amphiphiles. Biochim Biophys Acta 604:1–26PubMedCrossRefGoogle Scholar
  99. Wu ZY, Ye CS, Guo F, Zhang SH, Yu X (2013) Evidence for Broad-Spectrum Biofilm Inhibition by the Bacterium Bacillus sp Strain SW9. Appl Environ Microbiol 79:1735–1738PubMedCentralPubMedCrossRefGoogle Scholar
  100. Xu Z, Shao J, Li B, Yan X, Shen Q, Zhang R (2013) Contribution of Bacillomycin D in Bacillus amyloliquefaciens SQR9 to Antifungal Activity and Biofilm Formation. Appl Environ Microbiol 79:808–815PubMedCentralPubMedCrossRefGoogle Scholar
  101. Zakaria Gomaa E (2013) Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates, biofilm formation and aggregation ability. J Gen Appl Microbiol 59:425-–36PubMedCrossRefGoogle Scholar
  102. Zhang Y (2014) Persisters, persistent infections and the Yin-Yang model. Emerg Microbes Infect 3: e3. Published online: doi: 10.1038/emi.2014.3

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ibrahim M. Banat
    • 1
  • Mayri A. Díaz De Rienzo
    • 2
  • Gerry A. Quinn
    • 3
  1. 1.School of Biomedical SciencesUniversity of UlsterColeraineUK
  2. 2.School of Chemical Engineering and Analytical ScienceUniversity of ManchesterManchesterUK
  3. 3.College of MedicineSwansea UniversitySwanseaUK

Personalised recommendations