Applied Microbiology and Biotechnology

, Volume 99, Issue 5, pp 2405–2418 | Cite as

Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium

  • Erika J. Espinosa-Ortiz
  • Graciela Gonzalez-Gil
  • Pascal E. Saikaly
  • Eric D. van Hullebusch
  • Piet N. L. Lens
Environmental biotechnology


The ability of Phanerochaete chrysosporium to reduce the oxidized forms of selenium, selenate and selenite, and their effects on the growth, substrate consumption rate, and pellet morphology of the fungus were assessed. The effect of different operational parameters (pH, glucose, and selenium concentration) on the response of P. chrysosporium to selenium oxyanions was explored as well. This fungal species showed a high sensitivity to selenium, particularly selenite, which inhibited the fungal growth and substrate consumption when supplied at 10 mg L−1 in the growth medium, whereas selenate did not have such a strong influence on the fungus. Biological removal of selenite was achieved under semi-acidic conditions (pH 4.5) with about 40 % removal efficiency, whereas less than 10 % selenium removal was achieved for incubations with selenate. P. chrysosporium was found to be a selenium-reducing organism, capable of synthesizing elemental selenium from selenite but not from selenate. Analysis with transmission electron microscopy, electron energy loss spectroscopy, and a 3D reconstruction showed that elemental selenium was produced intracellularly as nanoparticles in the range of 30–400 nm. Furthermore, selenite influenced the pellet morphology of P. chrysosporium by reducing the size of the fungal pellets and inducing their compaction and smoothness.


Fungal pellets Selenium removal Selenium nanoparticles Phanerochaete chrysosporium 



The authors thank the EU for providing financial support through the Erasmus Mundus Joint Doctorate Programme ETeCoS3 (Environmental Technologies for Contaminated Solids, Soils and Sediments, grant agreement FPA no. 2010-0009). This work was partly supported by a Global Research Partnership-Collaborative Fellows Award (GRFP-CF-2011-13-P) from the King Abdullah University of Science and Technology. The authors thank Rachid Sougrad for his assistance with TEM 3D image reconstruction.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2014_6127_MOESM1_ESM.pdf (82 kb)
ESM 1 (PDF 81 kb)

(WMV 58,744 kb)


  1. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra/intracellular, biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53. doi: 10.1166/jbn.2005.012 CrossRefGoogle Scholar
  2. Ahmad RS, Ali F, Gazal M, Parisa JF, Sassan R, Seyed MR (2010) Antifungal activity of biogenic selenium nanoparticles. World Appl Sci J 10(8):912–922Google Scholar
  3. APHA (1995) Standard methods for water and wastewater examination, 19th edn. American Public Health Association, WashingtonGoogle Scholar
  4. Barkes L, Fleming RW (1974) Production of dimethylselenide gas from inorganic selenium by eleven soil fungi. Bull Environ Contam Toxicol 12:308–311CrossRefPubMedGoogle Scholar
  5. Beheshti N, Soflaei S, Shakibaie M, Yazdi MH, Ghaffarifar F, Dalimi A, Shahverdi AR (2013) Efficacy of biogenic selenium nanoparticles against Leishmania major: in vitro and in vivo studies. J Trace Elem Med Biol 27(3):203–207. doi: 10.1016/j.jtemb.2012.11.002 CrossRefPubMedGoogle Scholar
  6. Bleiman N, Mishael YG (2010) Selenium removal from drinking water by adsorption to chitosan-clay composites and oxides: batch and columns tests. J Hazard Mat 183(1–3):590–595. doi: 10.1016/j.jhazmat.2010.07.065 CrossRefGoogle Scholar
  7. Brady JM, Tobin JM, Gadd GM (1996) Volatilization of selenite in aqueous medium by a Penicillium species. Mycol Res 100:955–961. doi: 10.1016/S0953-7562(96)80048-7 CrossRefGoogle Scholar
  8. Brix KV, Adams WJ, Reash RJ, Carlton RG, McIntyre DO (2001) Acute toxicity of sodium selenate to two daphnids and three amphipods. Environ Toxicol 16(2):142–150. doi: 10.1002/tox.1018 CrossRefPubMedGoogle Scholar
  9. Brown TA, Shrift A (1980) Assimilation of selenate and selenite by Salmonella typhimurium. Can J Microbiol 26:671–675CrossRefPubMedGoogle Scholar
  10. Burghardt RC, Droleskey R (2006) Transmission Electron Microscopy. Current Protocols in Microbiology. 3:2B.1.1–2B.1.39. doi: 10.1002/9780471729259.mc02b01s03
  11. Cameron MD, Timofeevski S, Aust SD (2000) Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol 54:751–758. doi: 10.1007/s002530000459 CrossRefPubMedGoogle Scholar
  12. Canton SP (1999) Acute aquatic life criteria for selenium. Environ Toxicol Chem 18:1425–1432. doi: 10.1002/etc.5620180712 CrossRefGoogle Scholar
  13. Castro-Longoria E, Vilchis-Nestor A, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B: Biointerfaces 83:42–48. doi: 10.1016/j.colsurfb.2010.10.035 CrossRefPubMedGoogle Scholar
  14. Catal T, Liu H, Bermek H (2008) Selenium induces manganese-dependent peroxidase production by the white-rot fungus Bjerkandera adusta (Willdenow) P. Karsten. Biol Trace Elem Res 123:211–217. doi: 10.1007/s12011-007-8084-5 CrossRefPubMedGoogle Scholar
  15. Chan YS, Don MM (2013) Biosynthesis and structural characterization of Ag nanoparticles from white-rot fungi. Mater Sci Eng C 33:282–288. doi: 10.1016/j.msec.2012.08.041 CrossRefGoogle Scholar
  16. Debieux CM, Dridge EJ, Mueller CM, Splatt P, Paszkiewicz K, Knight I, Florance H, Love J, Titball RW, Lewis RJ, Richardson DJ, Butler CS (2011) A bacterial process for selenium nanosphere assembly. Proc Natl Acad Sci U S A 108:13480–13485. doi: 10.1073/pnas.1105959108 CrossRefPubMedCentralPubMedGoogle Scholar
  17. Fleming RW, Alexander M (1972) Dimethylselenide and dimethyltelluride formation by a strain of Penicillium. Appl Microbiol 24:424–429PubMedCentralPubMedGoogle Scholar
  18. Fordyce FM (2013) Selenium deficiency and toxicity in the environment. In: Selinus O (ed) Essentials of medical geology, revised edition. Springer, Netherlands, pp 375–416CrossRefGoogle Scholar
  19. Frankenberger WT, Amrhein C, Fan TWM, Flaschi D, Glater J, Kartinen E, Kovac K, Lee E, Ohlendorf HM, Owens L, Terry N, Toto A (2004) Advanced treatment technologies in the remediation of seleniferous drainage waters and sediments. Irrig Drain Syst 18:19–41. doi: 10.1023/B:IRRI.0000019422.68706.59 CrossRefGoogle Scholar
  20. Gadd GM (1993) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316. doi: 10.1111/j.1574-6976.1993.tb00003.x CrossRefGoogle Scholar
  21. Gharieb MM (1993) Selenium toxicity, accumulation and metabolism by fungi and influence of the fungicide dithane. PhD thesis. University of DundeeGoogle Scholar
  22. Gharieb MM, Gadd GM (2004) The kinetics of 75[Se]-selenite uptake by Saccharomyces cerevisiae and the vacuolization response to high concentrations. Mycol Res 108(12):1415–1422. doi: 10.1017/S0953756204001418 CrossRefPubMedGoogle Scholar
  23. Gharieb MM, Wilkinson SC, Gadd GM (1995) Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: cellular location of reduced selenium and implication for tolerance. J Ind Microbiol 14(3–4):300–311. doi: 10.1007/BF01569943 CrossRefGoogle Scholar
  24. Geoffroy N, Demopoulos GP (2011) The elimination of selenium (IV) from aqueous solution by precipitation with sodium sulfide. J Hazard Mater 185(1):148–154. doi: 10.1016/j.jhazmat.2010.09.009 CrossRefPubMedGoogle Scholar
  25. Golubev VI, Golubev NV (2002) Selenium tolerance of yeasts. Microbiology 71(4):455–459. doi: 10.1023/A:1019829107239 CrossRefPubMedGoogle Scholar
  26. Graz M, Pawlikowska-Pawlega B, Jarosz-Wilkolazka A (2011) Growth inhibition and intracellular distribution of Pb ions by the white-rot fungus Abortiporus biennis. Int Biodeterior Biodegrad 65:124–129. doi: 10.1016/j.ibiod.2010.08.010 CrossRefGoogle Scholar
  27. Fellowes JW, Pattrick RA, Green DI, Dent A, Lloyd JR, Pearce CI (2011) Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens. J Hazard Mater 189(3):660–669. doi: 10.1016/j.jhazmat.2011.01.079 CrossRefPubMedGoogle Scholar
  28. Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326(1–3):1–31. doi: 10.1016/j.scitotenv.2004.01.019 PubMedGoogle Scholar
  29. Huang DL, Zeng GM, Feng CL, Hu S, Zhao MH, Lai C, Zhang Y, Jiang XY, Liu HL (2010) Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress. Chemosphere 81:1091–1097. doi: 10.1016/j.chemosphere.2010.09.029 CrossRefPubMedGoogle Scholar
  30. Jain R, Jordan N, Schild, van Hullebusch ED, Weiss S, Franzen C, Farges F, Hübner R, Lens PNL (2014) Adsorption of zinc by biogenic elemental selenium nanoparticles. Chem Eng J. doi: 10.1016/j.cej.2014.09.057 Google Scholar
  31. Kim J, Dong H (2011) Application of electron energy-loss spectroscopy (EELS) and energy-filtered transmission electron microscopy (EFTEM) to the study of mineral transformation associated with microbial Fe-reduction of magnetite. Clays Clay Miner 59:176–188. doi: 10.1346/CCMN.2011.0590206 CrossRefGoogle Scholar
  32. Kim CG, Power SA, Bell JNB (2003) Effects of cadmium on growth and glucose utilization of ectomycorrhizal fungi in vitro. Mycorrhiza 13:223–226. doi: 10.1007/s00572-003-0235-8 CrossRefPubMedGoogle Scholar
  33. Koning R, Koster A (2013) Cellular nanoimaging by cryo electron tomography. In: Sousa AA, Kruhlak MJ (eds), Nanoimaging: Methods and Protocols 950. Humana Press, Totowa, NJ. pp. 227–251Google Scholar
  34. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76. doi: 10.1006/jsbi.1996.0013 CrossRefPubMedGoogle Scholar
  35. Lauchli A (1993) Selenium in plants: uptake, functions and environmental toxicity. Bot Acta 106:455–468CrossRefGoogle Scholar
  36. Lee H, Jang Y, Choi YS, Kim MJ, Lee J, Lee H, Hong JH, Lee YM, Kim GH, Kim JJ (2014) Biotechnological procedures to select white rot fungi for the degradation of PAHs. J Microbiol Methods 97:56–62. doi: 10.1016/j.mimet.2013.12.007 CrossRefPubMedGoogle Scholar
  37. Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–3633. doi: 10.1016/j.scitotenv.2008.07.056 CrossRefPubMedGoogle Scholar
  38. Lortie L, Gould WD, Rajan S, McCready RGL, Cheng KJ (1992) Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl Environ Microbiol 58:4042–4044PubMedCentralPubMedGoogle Scholar
  39. Metz B, Kossen NWF (1977) The growth of molds in the form of pellets—a literature review. Biotechnol Bioeng 19:781–799. doi: 10.1002/bit.260190602 CrossRefGoogle Scholar
  40. Mavrov V, Stamenov S, Todorova E, Chmiel H, Erwe T (2006) New hybrid electrocoagulation membrane process for removing selenium from industrial wastewater. Desalination 201:290–296. doi: 10.1016/j.desal.2006.06.005 CrossRefGoogle Scholar
  41. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. doi: 10.1021/ac60147a030 CrossRefGoogle Scholar
  42. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356. doi: 10.1016/j.biotechadv.2013.01.003 CrossRefPubMedGoogle Scholar
  43. Mishra RR, Prajapati S, Das J, Dangar TK, Das N, Thatoi H (2011) Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere 84:1231–1237. doi: 10.1016/j.chemosphere.2011.05.025 CrossRefPubMedGoogle Scholar
  44. Moldes D, Rodríguez S, Cameselle C, Sanromán MA (2003) Study of the degradation of dyes by MnP of Phanerochaete chrysosporium produced in a fixed-bed bioreactor. Chemosphere 51:295–303. doi: 10.1016/S0045-6535(02)00406-X CrossRefPubMedGoogle Scholar
  45. Moss MO, Badii F, Gibbs G (1987) Reduction of biselenite to elemental selenium by Aspergillus parasiticus. Trans Br Mycol Soc 89(4):578–580. doi: 10.1016/S0007-1536(87)80094-3 CrossRefGoogle Scholar
  46. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl4 ions by the fungus Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed Engl 40:3585–3588. doi: 10.1002/1521-3773(20011001)40:19<3585
  47. Nguyen VNH, Amal R, Beydoun D (2005) Photocatalytic reduction of selenium ions using different TiO2 photocatalysts. Chem Eng Sci 60(21):5759–5769. doi: 10.1016/j.ces.2005.04.085 CrossRefGoogle Scholar
  48. Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60. doi: 10.1128/AEM.70.1.52-60.2004 CrossRefPubMedCentralPubMedGoogle Scholar
  49. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3):189–259. doi: 10.1016/j.biotechadv.2003.09.005 CrossRefPubMedGoogle Scholar
  50. Pazouki M, Panda T (2000) Understanding the morphology of fungi. Bioprocess Eng 22:127–143. doi: 10.1007/s004490050022 CrossRefGoogle Scholar
  51. Prasad KS, Patel H, Patel T, Patel K, Selvaraj K (2013) Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf B: Biointerfaces 103:261–266. doi: 10.1016/j.colsurfb.2012.10.029 CrossRefPubMedGoogle Scholar
  52. Prosser JI (1995) Kinetics of filamentous growth and branching. In: Gow NAR, Gadd GM (eds) The growing fungus. Springer, The Netherlands, pp 301–318CrossRefGoogle Scholar
  53. Rajakumar G, Rahuman AA, Roopan SM, Khanna VG, Elango G, Kamaraj C, Zahir AA, Velayutham K (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A 91:23–29. doi: 10.1016/j.saa.2012.01.011 CrossRefGoogle Scholar
  54. Ramadan SE, Razak AA, Yousseff YA, Sedky NM (1988) Selenium metabolism in a strain of Fusarium. Biol Trace Elem Res 18:161–170. doi: 10.1007/BF02917500 CrossRefPubMedGoogle Scholar
  55. Rasband WS (1997–2014) ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA.
  56. Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268. doi: 10.1016/S0140-6736(11)61452-9 CrossRefPubMedGoogle Scholar
  57. Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv Chem Eng Sci 1(3):154–162. doi: 10.4236/aces.2011.13023 CrossRefGoogle Scholar
  58. Saraswathy A, Hallberg R (2005) Mycelial pellet formation by Penicillium ochrochloron species due to exposure to pyrene. Microbiol Res 160(4):375–383. doi: 10.1016/j.micres.2005.03.001 CrossRefPubMedGoogle Scholar
  59. Sarkar J, Dey P, Saha S, Acharya K (2011) Mycosynthesis of selenium nanoparticles. Micro Nano Lett 6(8):599–602. doi: 10.1049/mnl.2011.0227 CrossRefGoogle Scholar
  60. Sastry M, Ahmad A, Islam N, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170Google Scholar
  61. Serafin-Muñoz AH, Kubachka K, Wrobel K, Gutierrez-Corona JF, Yathavakilla SKV, Caruso JA, Wrobel K (2006) Se-enriched mycelia of Pleurotus ostreatus: distribution of selenium in cell walls and cell membranes/cytosol. Agric Food Chem 54:3440–3444. doi: 10.1021/jf052973u CrossRefGoogle Scholar
  62. Soda S, Ike M (2011) Characterization of Pseudomonas stutzeri NT-I capable of removing soluble selenium from the aqueous phase under aerobic conditions. J Biosci Bioeng 112(3):259–264. doi: 10.1016/j.jbiosc.2011.05.012 CrossRefPubMedGoogle Scholar
  63. Syed A, Ahmad A (2012) Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces 97:27–31. doi: 10.1016/j.colsurfb.2012.03.026 CrossRefPubMedGoogle Scholar
  64. Teodoro JS, Simõesa AM, Duarte FV, Rolo AP, Murdoch RC, Hussain SM, Palmeira CM (2011) Assessment of the toxicity of silver nanoparticles in vitro: a mitocohondrial perspective. Toxicol in Vitro 25(3):664–670. doi: 10.1016/j.tiv.2011.01.004 CrossRefPubMedGoogle Scholar
  65. Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. In: Wood WA, Kellogg ST (eds) Methods in enzymology. Biomass, part b: lignin, pectin and chitin, vol 161. Academic, San Diego, pp 238–249CrossRefGoogle Scholar
  66. Tran PA, Webster TJ (2011) Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomedicine 6:1553–1558. doi: 10.2147/IJN.S21729 PubMedCentralPubMedGoogle Scholar
  67. Tweedie JW, Segel IH (1970) Specificity of transport processes for sulfur, selenium, and molybdenum anions by filamentous fungi. Biochim Biophys Acta 196(1):95–106. doi: 10.1016/0005-2736(70)90170-7 CrossRefPubMedGoogle Scholar
  68. Thongchul N, Yang ST (2003) Controlling filamentous fungal morphology by immobilization on a rotating fibrous matrix to enhance oxygen transfer and L(+)-lactic acid production by Rhizopus oryzae. In: Saha BC (ed) Fermentation process development. Oxford University Press, New York, pp 36–51, ACS Symposium Series 862Google Scholar
  69. USHHS. United States Department for Health and Human Services (2003) Toxicological profile for selenium. Available at: Accessed 05 Mar 2014
  70. Van Cutsem J, Van Gerven F, Fransen J, Schrooten P, Janssen PA (1990) The in vitro antifungal activity of ketoconazole, zinc pyrithione, and selenium sulfide against Pityrosporum and their efficacy as a shampoo in the treatment of experimental pityrosporosis in guinea pigs. J Am Acad Dermatol 22(6 Pt 1):993–998. doi: 10.1016/0190-9622(90)70140-D CrossRefPubMedGoogle Scholar
  71. Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40. doi: 10.2217/nnm.09.77 CrossRefPubMedGoogle Scholar
  72. Vetchinkina E, Loshchinina E, Kursky V, Nikitina V (2013) Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium. J Micriobiol 51(6):829–835. doi: 10.1007/s12275-013-2689-5 CrossRefGoogle Scholar
  73. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phanerochaete chrysosporium. Colloids Surf B: Biointerfaces 53:55–59. doi: 10.1016/j.colsurfb.2006.07.014 CrossRefPubMedGoogle Scholar
  74. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418. doi: 10.1016/j.matlet.2006.07.042 CrossRefGoogle Scholar
  75. Wang C, Sun H, Li J, Li Y, Zhang Q (2009) Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere 77:733–738. doi: 10.1016/j.chemosphere.2009.08.028 CrossRefPubMedGoogle Scholar
  76. Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B: Biointerfaces 80(1):94–102. doi: 10.1016/j.colsurfb.2010.05.041 CrossRefPubMedGoogle Scholar
  77. Xu P, Liu L, Zeng G, Huang D, Lai C, Zhao M, Huang C, Li N, Wei Z, Wu H, Zhang C, Lai M, He Y (2014) Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 98:6409–6418. doi: 10.1007/s00253-014-5667-x CrossRefPubMedGoogle Scholar
  78. Zelmanov G, Semiat R (2013) Selenium removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles sol (NanoFe) as an adsorbent. Sep Purif Technol 103:167–172. doi: 10.1016/j.seppur.2012.10.037 CrossRefGoogle Scholar
  79. Zhang J, Wang H, Yan X, Zhang L (2005) Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci 76:1099–1109. doi: 10.1016/j.lfs.2004.08.015 CrossRefPubMedGoogle Scholar
  80. Zhang J, Wang X, Xu T (2008) Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with SE-methylselenocysteine in mice. Toxicol Sci 101(1):22–31. doi: 10.1093/toxsci/kfm221 CrossRefPubMedGoogle Scholar
  81. Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D (2011) Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B: Biointerfaces 88(1):196–201. doi: 10.1093/toxsci/kfm221 CrossRefPubMedGoogle Scholar
  82. Zieve R, Ansell PJ, Young TWK, Peterson PJ (1985) Selenium volatilization by Mortierella species. Trans Br Mycol Soc 84:177–179. doi: 10.1016/S0007-1536(85)80240-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Erika J. Espinosa-Ortiz
    • 1
  • Graciela Gonzalez-Gil
    • 1
    • 2
  • Pascal E. Saikaly
    • 2
  • Eric D. van Hullebusch
    • 3
  • Piet N. L. Lens
    • 1
  1. 1.UNESCO-IHE Institute for Water EducationDelftThe Netherlands
  2. 2.Water Desalination and Reuse Center, Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  3. 3.Laboratoire Géomatériaux et Environnement (EA 4508), UPEMUniversité Paris-EstMarne-la-ValléeFrance

Personalised recommendations