Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 3, pp 1273–1286 | Cite as

An impaired ubiquitin ligase complex favors initial growth of auxotrophic yeast strains in synthetic grape must

  • Ana Mangado
  • Jordi Tronchoni
  • Pilar Morales
  • Maite Novo
  • Manuel Quirós
  • Ramon GonzalezEmail author
Applied genetics and molecular biotechnology

Abstract

We used experimental evolution in order to identify genes involved in the adaptation of Saccharomyces cerevisiae to the early stages of alcoholic fermentation. Evolution experiments were run for about 200 generations, in continuous culture conditions emulating the initial stages of wine fermentation. We performed whole-genome sequencing of four adapted strains from three independent evolution experiments. Mutations identified in these strains pointed to the Rsp5p-Bul1/2p ubiquitin ligase complex as the preferred evolutionary target under these experimental conditions. Rsp5p is a multifunctional enzyme able to ubiquitinate target proteins participating in different cellular processes, while Bul1p is an Rsp5p substrate adaptor specifically involved in the ubiquitin-dependent internalization of Gap1p and other plasma membrane permeases. While a loss-of-function mutation in BUL1 seems to be enough to confer a selective advantage under these assay conditions, this did not seem to be the case for RSP5 mutated strains, which required additional mutations, probably compensating for the detrimental effect of altered Rsp5p activity on essential cellular functions. The power of this experimental approach is illustrated by the identification of four independent mutants, each with a limited number of SNPs, affected within the same pathway. However, in order to obtain information relevant for a specific biotechnological process, caution must be taken in the choice of the background yeast genotype (as shown in this case for auxotrophies). In addition, the use of very stable continuous fermentation conditions might lead to the selection of a rather limited number of adaptive responses that would mask other possible targets for genetic improvement.

Keywords

Wine yeast Adaptive laboratory evolution (ALE) Experimental evolution Fermentation kinetics Next-generation sequencing (NGS) Rsp5p-Bul1/2p 

Notes

Acknowledgments

We are grateful to Cristina Juez and Laura López for technical assistance, and Rafael Torres for advise with NGS data analysis. This work was supported by the Spanish Ministerio de Ciencia e Innovación (grants AGL2009-07327 and AGL2012-32064) and Junta de Andalucía (grant P10-AGR6544). AM was the recipient of a FPI fellowship from the Spanish Ministerio de Economía y Competitividad. MQ and MN were recipients of JAE-Doc fellowships from the Spanish National Research Council (CSIC), co-funded by the European Social Fund of the EU.

References

  1. Abe F, Iida H (2003) Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2. Mol Cell Biol 23:7566–7584PubMedCentralPubMedCrossRefGoogle Scholar
  2. Baganz F, Hayes A, Farquhar R, Butler PR, Gardner DCJ, Oliver SG (1998) Quantitative analysis of yeast gene function using competition experiments in continuous culture. Yeast 14:1417–1427PubMedCrossRefGoogle Scholar
  3. Bai FY, Liang HY, Jia JH (2000) Taxonomic relationships among the taxa in the Candida guilliermondii complex, as revealed by comparative electrophoretic karyotyping. Int J Syst Evol Microbiol 50:417–422PubMedCrossRefGoogle Scholar
  4. Beaudenon SL, Huacani MR, Wang G, McDonell DP, Huibregtse JM (1999) Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol Cell Biol 19:6972–6979PubMedCentralPubMedGoogle Scholar
  5. Belgareh-Touzé N, Léon S, Erpapazoglou Z, Stawiecka-Mirota M, Urban-Grimal D, Haguenauer-Tsapis R (2008) Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking. Biochem Soc Trans 36:791–796PubMedCrossRefGoogle Scholar
  6. Cadière A, Ortiz-Julien A, Camarasa C, Dequin S (2011) Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway. Metab Eng 13:263–271PubMedCrossRefGoogle Scholar
  7. Cadière A, Aguera E, Caillé S, Ortiz-Julien A, Dequin S (2012) Pilot-scale evaluation the enological traits of a novel, aromatic wine yeast strain obtained by adaptive evolution. Food Microbiol 32:332–337PubMedCrossRefGoogle Scholar
  8. Chae HZ, Kim IH, Kim K, Rhee SG (1993) Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J Biol Chem 268:16815–16821PubMedGoogle Scholar
  9. Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, Ruden DM, Lu X (2012) Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front Genet 3:35PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cohen M, Stutz F, Belgareh N, Haguenauer-Tsapis R, Dargemont C (2003a) Ubp3 requires a cofactor, Bre5, to specifically de-ubiquitinate the COPII protein, Sec23. Nat Cell Biol 5:661–667PubMedCrossRefGoogle Scholar
  11. Cohen M, Stutz F, Dargemont C (2003b) Deubiquitination, a new player in golgi to endoplasmic reticulum retrograde transport. J Biol Chem 278:51989–51992PubMedCrossRefGoogle Scholar
  12. Conrad TM, Lewis NE, Palsson BO (2011) Microbial laboratory evolution in the era of genome-scale science. Mol Syst Biol 7:509PubMedCentralPubMedCrossRefGoogle Scholar
  13. Daran-Lapujade P, Jansen MLA, Daran JM, Van Gulik W, De Winde JH, Pronk JT (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae: a chemostat culture study. J Biol Chem 279:9125–9138PubMedCrossRefGoogle Scholar
  14. Ding J, Bierma J, Smith MR, Poliner E, Wolfe C, Hadduck AN, Zara S, Jirikovic M, van Zee K, Penner MH, Patton-Vogt J, Bakalinsky AT (2013) Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. Appl Microbiol Biotechnol 97:7405–7416PubMedCrossRefGoogle Scholar
  15. Dunham MJ (2010) Experimental evolution in yeast: a practical guide. In: Weissman J, Guthrie C, Fink G (eds) Methods in enzymology, vol 470, Guide to yeast genetics: functional genomics, proteomics, and other systems analysis. Elsevier, London, UK, pp 487–507Google Scholar
  16. Dupré S, Urban-Grimal D, Haguenauer-Tsapis R (2004) Ubiquitin and endocytic internalization in yeast and animal cells. Biochim Biophys Acta 1695:89–111PubMedCrossRefGoogle Scholar
  17. García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, Dopazo J, Meyer TF, Conesa A (2012) Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 28:2678–2679PubMedCrossRefGoogle Scholar
  18. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Meth Enzymol 350:87–96PubMedCrossRefGoogle Scholar
  19. Haitani Y, Takagi H (2008) Rsp5 is required for the nuclear export of mRNA of HSF1 and MSN2/4 under stress conditions in Saccharomyces cerevisiae. Genes Cells 13:105–116PubMedCrossRefGoogle Scholar
  20. Hayes A, Zhang N, Wu J, Butler PR, Hauser NC, Hoheisel JD, Lim FL, Sharrocks AD, Oliver SG (2002) Hybridization array technology coupled with chemostat culture: Tools to interrogate gene expression in Saccharomyces cerevisiae. Methods 26:281–290PubMedCrossRefGoogle Scholar
  21. Helliwell SB, Losko S, Kaiser CA (2001) Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J Cell Biol 153:649–662PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S (2007) Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 131:34–44PubMedCrossRefGoogle Scholar
  23. Hoshikawa C, Shichiri M, Nakamori S, Takagi H (2003) A nonconserved Ala401 in the yeast Rsp5 ubiquitin ligase is involved in degradation of Gap1 permease and stress-induced abnormal proteins. Proc Natl Acad Sci U S A 100:11505–11510PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hoskisson PA, Hobbs G (2005) Continuous culture—making a comeback? Microbiology 151:3153–3159PubMedCrossRefGoogle Scholar
  25. Huxley C, Green ED, Dunham I (1990) Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet 6:236PubMedCrossRefGoogle Scholar
  26. Ingham RJ, Gish G, Pawson T (2004) The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 23:1972–1984PubMedCrossRefGoogle Scholar
  27. Jarmoszewicz K, Łukasiak K, Riezman H, Kaminska J (2012) Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants. PLoS One 7:e39582PubMedCentralPubMedCrossRefGoogle Scholar
  28. Jiménez J, Benítez T (1987) Genetic analysis of highly ethanol-tolerant wine yeasts. Curr Genet 12:421–428CrossRefGoogle Scholar
  29. Kaida D, Toh-e A, Kikuchi Y (2003) Rsp5-Bul1/2 complex is necessary for the HSE-mediated gene expression in budding yeast. Biochem Biophys Res Commun 306:1037–1041PubMedCrossRefGoogle Scholar
  30. Kaliszewski P, Zoładek T (2008) The role of Rsp5 ubiquitin ligase in regulation of diverse processes in yeast cells. Acta Biochim Pol 55:649–662PubMedGoogle Scholar
  31. Kolkman A, Olsthoorn MMA, Heeremans CEM, Heck AJR, Slijper M (2005) Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol. Mol Cell Proteomics 4:1–11PubMedCrossRefGoogle Scholar
  32. Kus B, Gajadhar A, Stanger K, Cho R, Sun W, Rouleau N, Lee T, Chan D, Wolting C, Edwards A, Bosse R, Rotin D (2005) A high throughput screen to identify substrates for the ubiquitin ligase Rsp5. J Biol Chem 280:29470–29478PubMedCrossRefGoogle Scholar
  33. Kutyna DR, Varela C, Stanley GA, Borneman AR, Henschke PA, Chambers PJ (2012) Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production. Appl Microbiol Biotechnol 93:1175–1184PubMedCrossRefGoogle Scholar
  34. Landry CR, Townsend JP, Hartl DL, Cavalieri D (2006) Ecological and evolutionary genomics of Saccharomyces cerevisiae. Mol Ecol 15:575–591PubMedCrossRefGoogle Scholar
  35. Legras J-L, Karst F (2003) Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol Lett 221:249–255PubMedCrossRefGoogle Scholar
  36. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760PubMedCentralPubMedCrossRefGoogle Scholar
  37. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079PubMedCentralPubMedCrossRefGoogle Scholar
  38. Liu J, Sitaram A, Burd CG (2007) Regulation of copper-dependent endocytosis and vacuolar degradation of the yeast copper transporter, Ctr1p, by the Rsp5 ubiquitin ligase. Traffic 8:1375–1384PubMedCrossRefGoogle Scholar
  39. Lõoke M, Kristjuhan K, Kristjuhan A (2011) Extraction of genomic DNA from yeasts for PCR-based applications. BioTechniques 50:325–328PubMedCentralPubMedGoogle Scholar
  40. Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18PubMedCrossRefGoogle Scholar
  41. Martínez-Moreno R, Morales P, Gonzalez R, Mas A, Beltran G (2012) Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source. FEMS Yeast Res 12:477–485PubMedCrossRefGoogle Scholar
  42. McBryde C, Gardner JM, de Barros LM, Jiranek V (2006) Generation of novel wine yeast strains by adaptive evolution. Am J Enol Vitic 57:423–430Google Scholar
  43. Mortimer RK, Johnston JR (1986) Genealogy of principal strains of the yeast genetic stock center. Genetics 113:35–43PubMedCentralPubMedGoogle Scholar
  44. Mülleder M, Capuano F, Pir P, Christen S, Sauer U, Oliver SG, Ralser M (2012) A prototrophic deletion mutant collection for yeast metabolomics and systems biology. Nat Biotechnol 30:1176–1178PubMedCentralPubMedCrossRefGoogle Scholar
  45. Neumann S, Petfalski E, Brügger B, Grosshnas H, Wieland F, Tollervey D, Jurt E (2003) Formation and nuclear exprot of tRNA, rRNA and mRNA is regulated by the ubiquitin ligase Rsp5p. EMBO Rep 4:1156–1162PubMedCentralPubMedCrossRefGoogle Scholar
  46. Novo M, Mangado A, Quirós M, Morales P, Salvadó Z, Gonzalez R (2013) Genome-wide study of the adaptation of Saccharomyces cerevisiae to the proliferative stages of wine fermentation. PLoS One 8:e74086PubMedCentralPubMedCrossRefGoogle Scholar
  47. Ossareh-Nazari B, Cohen M, Dargemont C (2010) The Rsp5 ubiquitin ligase and the AAA-ATPase Cdc48 control the ubiquitin-mediated degradation of the COPII component Sec23. Exp Cell Res 316:3351–3357PubMedCrossRefGoogle Scholar
  48. Oud B, Van Maris AJA, Daran JM, Pronk JT (2012) Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 12:183–196PubMedCentralPubMedCrossRefGoogle Scholar
  49. Pierce SE, Davis RW, Nislow C, Giaever G (2007) Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat Protoc 2:2958–2974PubMedCrossRefGoogle Scholar
  50. Piggott N, Cook MA, Tyers M, Measday V (2011) Genome-wide fitness profiles reveal a requirement for autophagy during yeast fermentation. G3: 1:353–367Google Scholar
  51. Piper MDW, Daran-Lapujade P, Bro C, Regenberg B, Knudsen S, Nielsen J, Pronk JT (2002) Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 277:37001–37008PubMedCrossRefGoogle Scholar
  52. Prelich G (2002) RNA Polymerase II carboxy-terminal domain kinases: emerging clues to their function. Eukaryotic Cell 1:153–162PubMedCentralPubMedCrossRefGoogle Scholar
  53. Puig S, Pérez-Ortín JE (2000) Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift. Yeast 16:139–148PubMedCrossRefGoogle Scholar
  54. Querol A, Barrio E, Huerta T, Ramon D (1992) Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl Environ Microbiol 58:2948–2953PubMedCentralPubMedGoogle Scholar
  55. Quirós M, Martínez-Moreno R, Albiol J, Morales P, Vázquez-Lima F, Barreiro-Vázquez A, Ferrer P, Gonzalez R (2013) Metabolic flux analysis during the exponential growth phase of Saccharomyces cerevisiae in wine fermentations. PLoS One 8:e71909PubMedCentralPubMedCrossRefGoogle Scholar
  56. Roberg KJ, Bickel S, Rowley N, Kaiser CA (1997) Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8. Genetics 147:1569–1584PubMedCentralPubMedGoogle Scholar
  57. Soetens O, De Craene JO, André B (2001) Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1. J Biol Chem 276:43949–43957PubMedCrossRefGoogle Scholar
  58. Steinmetz EJ, Conrad NK, Brown DA, Corden JL (2001) RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 413:327–331PubMedCrossRefGoogle Scholar
  59. Trabalzini L, Paffetti A, Scaloni A, Talamo F, Ferro E, Coratza G, Bovalini L, Lusini P, Martelli P, Santucci A (2003) Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae. Biochem J 370:35–46PubMedCentralPubMedCrossRefGoogle Scholar
  60. Trotter EW, Rand JD, Vickerstaff J, Grant CM (2008) The yeast Tsa1 peroxiredoxin is a ribosome-associated antioxidant. Biochem J 412:73–80PubMedCrossRefGoogle Scholar
  61. Varela C, Pizarro F, Agosin E (2004) Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl Environ Microbiol 70:3392–3400PubMedCentralPubMedCrossRefGoogle Scholar
  62. Wang SA, Bai FY (2008) Saccharomyces arboricolus sp. nov., a yeast species from tree bark. Int J Syst Evol Microbiol 58:510–514PubMedCrossRefGoogle Scholar
  63. Warringer J, Blomberg A (2003) Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae. Yeast 20:53–67PubMedCrossRefGoogle Scholar
  64. Wong CM, Siu KL, Jin DY (2004) Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J Biol Chem 279:23207–23213PubMedCrossRefGoogle Scholar
  65. Wu J, Zhang N, Hayes A, Panoutsopoulo K, Oliver SG (2004) Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation. Proc Natl Acad Sci U S A 101:3148–3153PubMedCentralPubMedCrossRefGoogle Scholar
  66. Yashiroda H, Oguchi T, Yasuda Y, Toh-E A, Kikuchi Y (1996) Bull, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae. Mol Cell Biol 16:3255–3263PubMedCentralPubMedGoogle Scholar
  67. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105PubMedCrossRefGoogle Scholar
  68. Zwietering MH, Jongenburger I, Rombouts FM, Van 't Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ana Mangado
    • 1
  • Jordi Tronchoni
    • 1
  • Pilar Morales
    • 1
  • Maite Novo
    • 2
  • Manuel Quirós
    • 3
  • Ramon Gonzalez
    • 1
    Email author
  1. 1.Instituto de Ciencias de la Vid y del Vino, ICVV(CSIC-Universidad de La Rioja-Gobierno de La Rioja)LogroñoSpain
  2. 2.Departament de Bioquímica i Biotecnologia, Facultat de Ciències de l′Educació i PsicologiaUniversitat Rovira i VirgiliTarragonaSpain
  3. 3.Evolva Biotech A/SCopenhagen ØDenmark

Personalised recommendations