Applied Microbiology and Biotechnology

, Volume 99, Issue 1, pp 241–254 | Cite as

Biosynthetic preparation of selectively deuterated phosphatidylcholine in genetically modified Escherichia coli

  • Selma Maric
  • Mikkel B. Thygesen
  • Jürgen Schiller
  • Magdalena Marek
  • Martine Moulin
  • Michael Haertlein
  • V. Trevor Forsyth
  • Mikhail Bogdanov
  • William Dowhan
  • Lise Arleth
  • Thomas Günther Pomorski
Biotechnological products and process engineering


Phosphatidylcholine (PC) is a major component of eukaryotic cell membranes and one of the most commonly used phospholipids for reconstitution of membrane proteins into carrier systems such as lipid vesicles, micelles and nanodiscs. Selectively deuterated versions of this lipid have many applications, especially in structural studies using techniques such as NMR, neutron reflectivity and small-angle neutron scattering. Here we present a comprehensive study of selective deuteration of phosphatidylcholine through biosynthesis in a genetically modified strain of Escherichia coli. By carefully tuning the deuteration level in E. coli growth media and varying the deuteration of supplemented carbon sources, we show that it is possible to achieve a controlled deuteration for three distinct parts of the PC lipid molecule, namely the (a) lipid head group, (b) glycerol backbone and (c) fatty acyl tail. This biosynthetic approach paves the way for the synthesis of specifically deuterated, physiologically relevant phospholipid species which remain difficult to obtain through standard chemical synthesis.


Glycerophospholipids Phosphatidylcholine Selective deuteration Biosynthesis E. coli Neutron scattering NMR Mass spectrometry Evolution in the test tube 


  1. Akesson A, Lind TK, Barker R, Hughes A, Cardenas M (2012) Unraveling dendrimer translocation across cell membrane mimics. Langmuir 28:13025–13033PubMedCrossRefGoogle Scholar
  2. Artero JB, Hartlein M, McSweeney S, Timmins P (2005) A comparison of refined X-ray structures of hydrogenated and perdeuterated rat gammaE-crystallin in H2O and D2O. Acta Crystallogr D Biol Crystallogr 61:1541–1549PubMedCrossRefGoogle Scholar
  3. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856CrossRefGoogle Scholar
  4. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  5. Bogdanov M, Heacock P, Guan Z, Dowhan W (2010) Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli. Proc Natl Acad Sci U S A 107:15057–15062PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bragina NA, Chupin VV (1997) Methods of synthesis of deuterium-labelled lipids. Russ Chem Rev 66:975–986CrossRefGoogle Scholar
  7. Cronan JE Jr, Bell RM (1974) Mutants of Escherichia coli defective in membrane phospholipid synthesis: mapping of sn-glycerol 3-phosphate acyltransferase Km mutants. J Bacteriol 120:227–233PubMedCentralPubMedGoogle Scholar
  8. Cuypers MG, Mason SA, Blakeley MP, Mitchell EP, Haertlein M, Forsyth VT (2013a) Near-atomic resolution neutron crystallography on perdeuterated Pyrococcus furiosus rubredoxin: implication of hydronium ions and protonation state equilibria in redox changes. Angew Chem Int Ed Engl 52:1022–1025PubMedCrossRefGoogle Scholar
  9. Cuypers MG, Trubitsyna M, Callow P, Forsyth VT, Richardson JM (2013b) Solution conformations of early intermediates in Mos1 transposition. Nucleic Acids Res 41:2020–2033PubMedCentralPubMedCrossRefGoogle Scholar
  10. De Giovanni R, Zamenhof S (1963) Studies on incorporation of deuterium into bacteria. Biochem J 87:79–82PubMedCentralGoogle Scholar
  11. de Kruijff B, van Zoelen EJ, van Deenen LL (1978) Glycophorin facilitates the transbilayer movement of phosphatidylcholine in vesicles. Biochim Biophys Acta 509:537–542PubMedCrossRefGoogle Scholar
  12. DeChavigny A, Heacock PN, Dowhan W (1991) Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability. J Biol Chem 266:10710PubMedGoogle Scholar
  13. Dowhan W (2013) A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochim Biophys Acta 1831:471–494PubMedCentralPubMedCrossRefGoogle Scholar
  14. Dufourc EJ, Smith IC, Jarrell HC (1983) A 2H-NMR analysis of dihydrosterculoyl-containing lipids in model membranes: structural effects of a cyclopropane ring. Chem Phys Lipids 33:153–177PubMedCrossRefGoogle Scholar
  15. Eibisch M, Zellmer S, Gebhardt R, Süss R, Fuchs B, Schiller J (2011) Phosphatidylcholine dimers can be easily misinterpreted as cardiolipins in complex lipid mixtures: a matrix-assisted laser desorption/ionization time-of-flight mass spectrometric study of lipids from hepatocytes. Rapid Commun Mass Spectrom 25:2619–2626PubMedCrossRefGoogle Scholar
  16. Fuchs B, Müller K, Göritz F, Blottner S, Schiller J (2007) Characteristic oxidation products of choline plasmalogens are detectable in cattle and roe deer spermatozoa by MALDI-TOF mass spectrometry. Lipids 42:991–998PubMedCrossRefGoogle Scholar
  17. Gardner KH, English AD, Forsyth VT (2004) New insights into the structure of poly(p-phenylene terephthalamide) from neutron fiber diffraction studies. Macromolecules 37:9654–9656CrossRefGoogle Scholar
  18. Grage SL, Keleshian AM, Turdzeladze T, Battle AR, Tay WC, May RP, Holt SA, Contera SA, Haertlein M, Moulin M, Pal P, Rohde PR, Forsyth VT, Watts A, Huang KC, Ulrich AS, Martinac B (2011) Bilayer-mediated clustering and functional interaction of MscL channels. Biophys J 100:1252–1260PubMedCentralPubMedCrossRefGoogle Scholar
  19. Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925PubMedCentralPubMedCrossRefGoogle Scholar
  20. Hellstrand E, Grey M, Ainalem ML, Ankner J, Forsyth VT, Fragneto G, Haertlein M, Dauvergne MT, Nilsson H, Brundin P, Linse S, Nylander T, Sparr E (2013) Adsorption of alpha-synuclein to supported lipid bilayers: positioning and role of electrostatics. ACS Chem Neurosci 4:1339–1351PubMedCentralPubMedCrossRefGoogle Scholar
  21. Howard EI, Blakeley MP, Haertlein M, Petit-Haertlein I, Mitschler A, Fisher SJ, Cousido-Siah A, Salvay AG, Popov A, Muller-Dieckmann C, Petrova T, Podjarny A (2011) Neutron structure of type-III antifreeze protein allows the reconstruction of AFP-ice interface. J Mol Recognit 24:724–732PubMedCrossRefGoogle Scholar
  22. Hunt JF, McCrea PD, Zaccai G, Engelman DM (1997) Assessment of the aggregation state of integral membrane proteins in reconstituted phospholipid vesicles using small angle neutron scattering. J Mol Biol 273:1004–1019PubMedCrossRefGoogle Scholar
  23. Jacques DA, Guss JM, Svergun DI, Trewhella J (2012) Publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution. Acta Crystallogr D Biol Crystallogr 68:620–626PubMedCrossRefGoogle Scholar
  24. Jordi BJ, Willshaw GA, van der Zeijst BA, Gaastra W (1992) The complete nucleotide sequence of region 1 of the CFA/I fimbrial operon of human enterotoxigenic Escherichia coli. DNA Seq 2:257–263PubMedGoogle Scholar
  25. Kaneko H, Hosohara M, Tanaka M, Itoh T (1976) Lipid composition of 30 species of yeast. Lipids 11:837–844PubMedCrossRefGoogle Scholar
  26. Katz JJ, Crespi HL (1966) Deuterated organisms: cultivation and uses. Science 151:1187–1194PubMedCrossRefGoogle Scholar
  27. Konarev PV, Petoukhov MV, Volkov VV, Svergun DI (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Crystallogr 39:277–286CrossRefGoogle Scholar
  28. Larson TJ, Dowhan W (1976) Ribosomal-associated phosphatidylserine synthetase from Escherichia coli: purification by substrate-specific elution from phosphocellulose using cytidine 5′-diphospho-1,2-diacyl-sn-glycerol. Biochemistry 15:5212–5218PubMedCrossRefGoogle Scholar
  29. Laux V, Callow P, Svergun DI, Timmins PA, Forsyth VT, Haertlein M (2008) Selective deuteration of tryptophan and methionine residues in maltose binding protein: a model system for neutron scattering. Eur Biophys J 37:815–822PubMedCrossRefGoogle Scholar
  30. Law JH (1971) Biosynthesis of cyclopropane rings. Acc Chem Res 4:199–203CrossRefGoogle Scholar
  31. Leiting B, Marsilio F, O’Connell JF (1998) Predictable deuteration of recombinant proteins expressed in Escherichia coli. Anal Biochem 265:351–355PubMedCrossRefGoogle Scholar
  32. Magnuson K, Jackowski S, Rock CO, Cronan JE Jr (1993) Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev 57:522–542PubMedCentralPubMedGoogle Scholar
  33. Majewski J, Kuhl TL, Wong JY, Smith GS (2000) X-ray and neutron surface scattering for studying lipid/polymer assemblies at the air–liquid and solid–liquid interfaces. J Biotechnol 74:207–231PubMedGoogle Scholar
  34. Maric S, Skar-Gislinge N, Midtgaard S, Thygesen MB, Schiller J, Frielinghaus H, Moulin M, Haertlein M, Forsyth VT, Pomorski TG, Arleth L (2014) Stealth carriers for low-resolution structure determination of membrane proteins in solution. Acta Crystallogr D Biol Crystallogr 70:317–328PubMedCrossRefGoogle Scholar
  35. Molloy S (2010) Reactive resistance. Nat Rev Genet 11:240PubMedCrossRefGoogle Scholar
  36. Paliy O, Bloor D, Brockwell D, Gilbert P, Barber J (2003) Improved methods of cultivation and production of deuteriated proteins from E. coli strains grown on fully deuteriated minimal medium. J Appl Microbiol 94:580–586PubMedCrossRefGoogle Scholar
  37. Petkovic M, Schiller J, Müller M, Benard S, Reichl S, Arnold K, Arnhold J (2001) Detection of individual phospholipids in lipid mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: phosphatidylcholine prevents the detection of further species. Anal Biochem 289:202–216PubMedCrossRefGoogle Scholar
  38. Raetz CR (1978) Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol Rev 42:614–659PubMedCentralPubMedGoogle Scholar
  39. Rambo RP, Tainer JA (2013) Super-resolution in solution X-ray scattering and its applications to structural systems biology. Annu Rev Biophys 42:415–441PubMedCrossRefGoogle Scholar
  40. Rochel N, Ciesielski F, Godet J, Moman E, Roessle M, Peluso-Iltis C, Moulin M, Haertlein M, Callow P, Mely Y, Svergun DI, Moras D (2011) Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings. Nat Struct Mol Biol 18:564–570PubMedCrossRefGoogle Scholar
  41. Rohwedder WK (1985) Mass-spectrometry of lipids labeled with stable isotopes. Prog Lipid Res 24:1–18PubMedCrossRefGoogle Scholar
  42. Rouser G, Siakotos AN, Fleischer S (1966) Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1:85–86PubMedCrossRefGoogle Scholar
  43. Saito K, Kawaguchi A, Okuda S, Seyama Y, Yamakawa T (1980) Incorporation of hydrogen atoms from deuterated water and stereospecifically deuterium-labeled nicotin amide nucleotides into fatty acids with the Escherichia coli fatty acid synthetase system. Biochim Biophys Acta 618:202–213PubMedCrossRefGoogle Scholar
  44. Schiller J, Arnhold J, Benard S, Müller M, Reichl S, Arnold K (1999) Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: a methodological approach. Anal Biochem 267:46–56PubMedCrossRefGoogle Scholar
  45. Schiller J, Süss R, Arnhold J, Fuchs B, Lessig J, Müller M, Petkovic M, Spalteholz H, Zschornig O, Arnold K (2004) Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res 43:449–488PubMedCrossRefGoogle Scholar
  46. Shotton MW, Pope LH, Forsyth T, Langan P, Denny RC, Giesen U, Dauvergne MT, Fuller W (1997) A high-angle neutron fibre diffraction study of the hydration of deuterated A-DNA. Biophys Chem 69:85–96PubMedCrossRefGoogle Scholar
  47. Skar-Gislinge N, Simonsen JB, Mortensen K, Feidenhans’l R, Sligar SG, Lindberg Moller B, Bjornholm T, Arleth L (2010) Elliptical structure of phospholipid bilayer nanodiscs encapsulated by scaffold proteins: casting the roles of the lipids and the protein. J Am Chem Soc 132:13713–13722PubMedCentralPubMedCrossRefGoogle Scholar
  48. Sun G, Yang K, Zhao Z, Guan S, Han X, Gross RW (2008) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of cellular glycerophospholipids enabled by multiplexed solvent dependent analyte-matrix interactions. Anal Chem 80:7576–7585PubMedCentralPubMedCrossRefGoogle Scholar
  49. Thomason LC, Sawitzke JA, Li X, Costantino N, Court DL (2014) Recombineering: genetic engineering in bacteria using homologous recombination. Curr Protoc Mol Biol 106:1 16 11–11 16 39Google Scholar
  50. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124PubMedCentralPubMedCrossRefGoogle Scholar
  51. Varga K, Aslimovska L, Parrot I, Dauvergne MT, Haertlein M, Forsyth VT, Watts A (2007) NMR crystallography: the effect of deuteration on high resolution 13C solid state NMR spectra of a 7-TM protein. Biochim Biophys Acta 1768:3029–3035PubMedCrossRefGoogle Scholar
  52. Vijayakrishnan S, Kelly SM, Gilbert RJ, Callow P, Bhella D, Forsyth T, Lindsay JG, Byron O (2010) Solution structure and characterisation of the human pyruvate dehydrogenase complex core assembly. J Mol Biol 399:71–93PubMedCentralPubMedCrossRefGoogle Scholar
  53. Wadsater M, Simonsen JB, Lauridsen T, Tveten EG, Naur P, Bjornholm T, Wacklin H, Mortensen K, Arleth L, Feidenhans’l R, Cardenas M (2011) Aligning nanodiscs at the air-water interface, a neutron reflectivity study. Langmuir 27:15065–15073PubMedCrossRefGoogle Scholar
  54. Wadsater M, Laursen T, Singha A, Hatzakis NS, Stamou D, Barker R, Mortensen K, Feidenhans’l R, Moller BL, Cardenas M (2012) Monitoring shifts in the conformation equilibrium of the membrane protein cytochrome P450 reductase (POR) in nanodiscs. J Biol Chem 287:34596–34603PubMedCentralPubMedCrossRefGoogle Scholar
  55. White T, Bursten S, Federighi D, Lewis RA, Nudelman E (1998) High-resolution separation and quantification of neutral lipid and phospholipid species in mammalian cells and sera by multi-one-dimensional thin-layer chromatography. Anal Biochem 258:109–117PubMedCrossRefGoogle Scholar
  56. Wikstrom M, Kelly AA, Georgiev A, Eriksson HM, Klement MR, Bogdanov M, Dowhan W, Wieslander A (2009) Lipid-engineered Escherichia coli membranes reveal critical lipid headgroup size for protein function. J Biol Chem 284:954–965PubMedCentralPubMedCrossRefGoogle Scholar
  57. Xia W, Dowhan W (1995) Phosphatidylinositol cannot substitute for phosphatidylglycerol in supporting cell growth of Escherichia coli. J Bacteriol 177:2926–2928PubMedCentralPubMedGoogle Scholar
  58. Xie J, Bogdanov M, Heacock P, Dowhan W (2006) Phosphatidylethanolamine and monoglucosyldiacylglycerol are interchangeable in supporting topogenesis and function of the polytopic membrane protein lactose permease. J Biol Chem 281:19172–19178PubMedCentralPubMedCrossRefGoogle Scholar
  59. Zhu X, Ng SY, Gupta AN, Feng YP, Ho B, Lapp A, Egelhaaf SU, Forsyth VT, Haertlein M, Moulin M, Schweins R, van der Maarel JR (2010) Effect of crowding on the conformation of interwound DNA strands from neutron scattering measurements and Monte Carlo simulations. Phys Rev E Stat Nonlinear Soft Matter Phys 81:061905CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Selma Maric
    • 1
    • 2
  • Mikkel B. Thygesen
    • 3
  • Jürgen Schiller
    • 4
  • Magdalena Marek
    • 2
  • Martine Moulin
    • 5
    • 6
  • Michael Haertlein
    • 5
  • V. Trevor Forsyth
    • 5
    • 6
  • Mikhail Bogdanov
    • 7
  • William Dowhan
    • 7
  • Lise Arleth
    • 1
  • Thomas Günther Pomorski
    • 2
  1. 1.Structural Biophysics, Niels Bohr Institute, Faculty of ScienceUniversity of CopenhagenCopenhagenDenmark
  2. 2.Center for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDenmark
  3. 3.CARB Centre, Department of Chemistry, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDenmark
  4. 4.Institut für Medizinische Physik und Biophysik, Medizinische FakultätUniversität LeipzigLeipzigGermany
  5. 5.Life Sciences GroupInstitut Laue LangevinGrenobleFrance
  6. 6.Faculty of Natural Sciences & Institute for Science and Technology in MedicineKeele UniversityStaffordshireUK
  7. 7.Department of Biochemistry and Molecular BiologyUniversity of Texas Medical School at HoustonHoustonUSA

Personalised recommendations